Preview

Чебышевский сборник

Расширенный поиск
Том 17, № 4 (2016)
Скачать выпуск PDF
https://doi.org/10.22405/2226-8383-2016-17-4

Статьи

5-10 99
Аннотация

Данная работа посвящена пятнадцатилетию издания Чебышёвского сборника и выходу 60-ого выпуска журнала. В статье освящены вопросы история создания журнала. Описаны этапы становления. Рассказано о вкладе различных ученых в работу журнала. Приводятся некоторые наукометрические показатели.

11-22 139
Аннотация

В данной работе рассматривается одномерная нестационарная задача теплопроводности, моделирующая процесс быстрого локального нагрева образца балочного типа по боковой поверхности. При этом характер нагрева таков, что можно выделить единственное определенное направление, в котором распространяется тепло. Температурные поля определяются приближенным методом, основанным на идее теплового фронта. Решение ищется в виде степенного ряда по координате с коэффициентами, зависящими от времени. Границы фронта распространения тепла как функции времени определяются из условия интегрального удовлетворения уравнению теплопроводности. Рассматриваемые температурные поля возникают во многих технологических процессах, например, при лазерной обработке материалов, когда из-за больших градиентов температур могут возникать температурные напряжения, приводящие к микрорастрескиванию внутренних слоев или разрушению элементов конструкций. Аналитический вид решения задачи теплопроводности позволяет получить аналитические выражения для температурных напряжений и в дальнейшем облегчает анализ результатов. В работе получены решения задач с граничными условиями первого и второго родов для двух монотонных и одной немонотонной зависимостей коэффициента теплопроводности от температуры. Проведено сравнение полученного решения нестационарной линейной задачи с точным и показана приемлемость метода для дальнейшего использования.

23-50 145
Аннотация

Основными алгоритмическими проблемами в теории групп, поставленными М. Дэном, являются проблемы равенства, сопряженности слов в конечно определенных группах и проблема изоморфизма групп. Среди работ, связанных с исследованием проблем М. Дэна, наиболее выдающимися являются работы П. С. Новикова, доказавшего неразрешимость проблем равенства, сопряженности слов в конечно определенных группах, а также неразрешимость проблемы изоморфизма групп. В связи с этим основные алгоритмические проблемы и их различные обобщения изучаются в определенных классах групп. Группы Кокстера введены Х. С. М. Кокстером: всякая группа отражений является группой Кокстера, если в качестве образующих взять отражения относительно гиперплоскостей, ограничивающих ее фундаментальный многогранник. Х. Кокстер перечислил все группы отражений в трехмерном евклидовом пространстве и доказал, что все они являются группами Кокстера, а всякая конечная группа Кокстера изоморфна некоторой группе отражений в трехмерном евклидовом пространстве, элементы которой имеют общую неподвижную точку. В алгебраическом аспекте группы Кокстера изучаются с работ Ж. Титса, которым решена проблема равенства слов в произвольных группах Кокстера. В данной статье рассматриваются известные результаты, полученные в решении алгоритмических проблем в группах Кокстера, основной же целью работы является анализ результатов по решению алгоритмических проблем в группах Кокстера, полученных членами Тульской алгебраической школы "Алгоритмические проблемы теории групп и полугрупп" под руководством В. Н. Безверхнего. Дан обзор утверждений и теорем, доказанных авторами статьи для различных классов групп Кокстера: групп Кокстера большого и экстрабольшого типов, групп Кокстера с древесной структурой, групп Кокстера с n-угольной структурой. Приводятся основные подходы и методы доказательства, среди которых метод диаграмм, введенный ван Кампеном, переоткрытый Р. Линдоном и усовершенствованный В. Н. Безверхним, в части, введения R-сокращений, специальных R-сокращений, специальных кольцевых сокращений, а также метод графов, метод типов, введенный В. Н. Безверхним, метод специального множества слов, разработанный В. Н. Безверхним на основе обобщения метода Нильсена на свободные конструкции групп. Рассмотренные в статье классы групп включают все группы Кокстера, которые либо принадлежат данным классам групп, либо могут быть представлены как обобщенные древесные структуры групп Кокстера, образованные из групп Кокстера с древесной структурой заменой некоторых вершин соответствующего дерева-графа группами Кокстера большого или экстрабольшого типов, а также группами Кокстера с n-угольной структурой.

51-56 87
Аннотация

В работе описывается техника, придуманная Н. П. Романовым для доказательства его теоремы о том, что нижняя асимптотическая плотность суммы множества простых и множества степеней фиксированного натурального числа положительна, которая также позволяет заменить в этой теореме второе множество другим — с похожими распределением и арифметикой. Описываются условия на второе множество, достаточные для получения аналога теоремы, и приводится пример множества с похожим распределением, но с другой арифметикой, для которого эти достаточные условия не выполняются. Доказывается, что для указанного множества аналог теоремы Романова неверен.

57-64 101
Аннотация

Функциональная независимость дзета-функций является интересной проблемой современности и восходит к Д. Гилберту. В 1990, выступая с докладом на Международном конгресе математиков в Париже, он выдвинул гипотезу, что дзета-функция Римана не удовлетворяет никакому алгебраическому дифференциальному уравнению. Эта гипотеза была доказана А. Островским. В 1975 г. С.М. Воронин доказал функциональную независимость дзета-функции Римана. С тех пор многими авторами была получена функциональная независимость ряда дзета и L-функций. В настоячей статье получена совместная функциональная независимость дзета-функции Римана и периодических дзета-функциий Гурвица с параметрами, алгебраически независимыми над полем рациональных чисел. Такая функциональная независимость иногда называется смешанной, поскольку дзета-функция Римана имеет эйлеровое произведение по простым числам, а периодические дзета-функции Гурвица такого произведения не имеет.

65-78 109
Аннотация

Гомологическая теория колец и модулей является одним из важных направлений алгебры. Она позволила ответить на многие вопросы теории колец. Наряду с этим и под большим влиянием теории колец стала развиваться гомологическая теория универсальных алгебр и, в частности, полугрупп и полигонов над ними. В этой теории исследуются понятия инъективного и проективного полигонов над полугруппами, понятия инъективной оболочки и проективного накрытия. Как и в случае колец и модулей, инъективная оболочка существует у всякого полигона, а проективное накрытие не у всякого. В 1967 году П. Бертьём доказал существование инъективных оболочек произвольного полигона над полугруппой (без предположения о наличии в полугруппе единицы). Моноиды (т.е. полугруппы с единицей), над которыми любой полигон имеет проективное накрытие, изучал Дж. Исбелл. Гомологическую теорию моноидов развивал Л. А. Скорняков. Многие результаты этой теории вошли в известную монографию М. Кильпа, У. Кнауэра и А. В. Михалёва. Для полугрупп сравнительно простого строения результаты гомологической теории могут быть существенно уточнены. Так, в 2012 году Г. Могаддаси описал инъективные полигоны и построил инъективные накрытия полигонов над полугруппой левых нулей в предположении сепарабельности полигона. И. Б. Кожухов и А. Р. Халиуллина описали инъективные и проективные полигоны над группами и полугруппами правых нулей, построили инъективные оболочки и проективные накрытия полигонов над этими полугруппами. Для полигонов над полугруппой левых нулей было снято условие сепарабельности полигонов. Важным классом полугрупп, включающим в себя группы, полугруппы левых и правых нулей, прямоугольные связки, является класс вполне простых полугрупп, а также ещё более широкий класс вполне 0-простых полугрупп. В 2000 году А. Ю. Авдеев и И. Б. Кожухов описали все полигоны над вполне простыми и полигоны с нулём над вполне 0-простыми полугруппами. Это дало возможность дальнейшего исследования полигонов над этими полугруппами. И. Б. Кожухов и А. О. Петриков описали инъективные и проективные полигоны над вполне простыми полугруппами, тем самым обобщив результаты работ И. Б. Кожухова и А. Р. Халиуллиной, а также работы Г. Могаддаси. Были построены также инъективные оболочки и проективные накрытия полигонов над этими полугруппами. В данной работе вышеупомянутые результаты о полигонах над вполне простыми полугруппами обобщаются на полигоны с нулём над вполне 0-простыми полугруппами. А именно, находятся необходимые и достаточные условия инъективности и проективности полигона с нулём над произвольной вполне 0-простой полугруппой, строятся инъективные оболочки и проективные накрытия произвольных полигонов с нулём над этими полугруппами. В частности, оказывается, что проективный полигон над произвольной вполне 0-простой полугруппой – это в точности 0-копроизведение свободного полигона и полигонов, изоморфных 0-минимальному правому идеалу полугруппы (рассматриваемому как правый полигон).

79-109 97
Аннотация

Настоящий обзор представляет собой развёрнутое содержание мини -курса, прочитанного автором в ноябре 2015 г. во время “Китайско-Российского симпозиума по тригонометрическим суммам и суммам множеств”. Это мероприятие, проходившее в Академии математики и системных наук (Пекин), было организовано профессорами Чаохуа Жиа (Институт математики Китайской академии наук) и Ке Гонгом (Университет Хенань), которым автор приносит глубокую благодарность за всяческую поддержку и гостеприимство. Обзор состоит из Введения, трёх частей и Заключения. Во Введении даются определения и приводятся основные факты, связанные с оценками полных сумм Клоостермана. В первой части излагается метод оценки неполных сумм Клоостермана по специальному модулю, равному растущей степени фиксированного простого числа. Этот метод основан на идее А. Г. Постникова, которая сводит оценку таких сумм к оценкам тригонометрических сумм с многочленом в показателе экспоненты с помощью теоремы о среднем И. М. Виноградова. Во второй части излагается метод А. А. Карацубы оценок неполных сумм Клоостермана по произвольному модулю, который основан на весьма точной оценке числа решений симметричного сравнения, содержащего обратные величины по заданному модулю. Эта оценка играет в рассматриваемых здесь вопросах ту же роль, что и теорема о среднем И. М. Виноградова при оценке соответствующих тригонометрических сумм. В третьей части излагается метод Ж. Бургейна и М. З. Гараева, в основе которого лежит глубокая теорема об “оценке сумм-произведений”, а также уточнение оценки А. А. Карацубы числа решений симметричного сравнения. В Заключении сформулирован ряд новых результатов об оценках коротких сумм Клоостермана, полученных в последние годы, доказательства которых не вошли в настоящий обзор.

110-123 81
Аннотация

В работе рассматриваются вопросы, связанные со скоростью сходимости метода Бубнова–Галёркина при численном расчёте напряжённо-деформированного состояния геометрически нелинейных оболочек в динамическом случае. Для решения этих вопросов привлекается аппарат сильно непрерывных ограниченных полугрупп операторов. В теории краевых задач методы функциональных полугрупп операторов эффективно применяются с 60-х годов XX-века. Это работы Э. Хилля, Р. Филлипса, С. Г. Крейна, С. Мизохата и других авторов. Так, применяя аппарат сильно непрерывных полугрупп операторов, С. Г. Крейн в конце 60-х годов по-новому доказал теоремы существования и единственности решений линейных уравнений механики. В 2000 году В. Н. Кузнецов и Т. А. Кузнецова впервые применили аппарат ограниченных полугрупп операторов для исследования решений линейных уравнений пологих оболочек, что позволило решить задачу о гладкости решений систем линейных уравнений оболочек. В это же время В. Н. Кузнецов и Т. А. Кузнецова предложили так называемый метод линейной аппроксимации по отдельным параметрам, который позволил решить задачу о гладкости решения уже нелинейных уравнений пластин и оболочек. Это дало возможность определиться со скоростью сходимости метода Бубнова — Галёркина при численном решении нелинейных краевых задач для геометрически нелинейных оболочек в области устойчивости по параметрам. В данной работе приводится результат о скорости сходимости метода Бубнова–Галёркина в случае кусочно-гладкой границы нелинейной оболочки.

124-131 107
Аннотация

Рассматривается класс рядов Дирихле с мультипликативными коэффициентами, которые определяют функции, регулярные в правой полуплоскости комплексной плоскости, и для которых существует последовательность полиномов Дирихле, равномерно сходящаяся к таким функциям в любом прямоугольнике, лежащем в критической полосе. Такие полиномы Дирихле получили в работе название аппроксимационных полиномов Дирихле. Изучаются свойства аппроксимационных полиномов, в частности, для рядов Дирихле, коэффициенты которых определяются неглавными обобщенными характерами, то есть конечнозначными числовыми характерами, отличными от нуля для почти всех простых чисел, сумматорная функция которых ограничена. Эти исследования представляют интерес в связи с задачей аналитического продолжения таких рядов Дирихле на комплексную плоскость, что, в свою очередь, связано с решением известной гипотезы Н. Г. Чудакова о том, что любой обобщенный характер является характером Дирихле.

132-140 83
Аннотация

В работе доказана полнота списка замкнутых выпуклых многогранников в E3, сильно симметричных относительно вращения граней. Многогранник называется симметричным, если он имеет хотя бы одну нетривиальную ось вращения. Все оси пересекаются в одной точке, которая называется центром многогранника. Все рассматриваемые в работе многогранники являются симметричными многогранниками. Выпуклый многогранник называется сильно симметричным относительно вращения граней, если у каждой его грани Fимеется ось вращения L, пересекающая относительную внутренность F, и Lявляется осью вращения многогранника. Очевидно, что порядок оси вращения Lне обязательно совпадает с порядком этой оси, если грань Fрассматривать как фигуру, отделённую от многогранника. Ранее автором было доказано, что требование глобальной симметрии многогранника относительно осей вращения граней можно заменить более слабым условием симметрии звезды каждой грани многогранника: для того, чтобы многогранник был сильно симметричным относительно вращения граней, необходимо и достаточно, чтобы некоторая нетривиальная ось вращения каждой грани, рассматриваемой как фигура, отделённая от многогранника, являлась осью вращения звезды этой грани. Под звездой грани Fпонимается сама грань и все грани, имеющие хотя бы одну общую вершину с FУчитывая это условие, определение многогранника сильно симметричного относительно вращения граней эквивалентно следующему: многогранник называется сильно симметричным относительно вращения граней, если некоторая нетривиальная ось вращения каждой грани, рассматриваемой как фигура, отделённая от многогранника, является осью вращения звезды этой грани. При доказательстве основной теоремы о полноте списка многогранников рассматриваемого класса используется результат о полном перечислении так называемых сильно симметричных многогранников 1-го и 2-го класса из [1]. В настоящей статье доказывается, что помимо многогранников 1-го и 2-го класса к многогранникам, сильно симметричным относительно вращения граней, принадлежат ещё только 8 типов многогранников. Из этих восьми типов 7 не являются даже комбинаторно эквивалентными равноугольно-полуправильным (архимедовым). Один тип из восьми является комбинаторно эквивалентным равноугольно-полуправильному многограннику, но не принадлежит многогранникам 1-го или 2-го класса. Переходя к многогранникам, двойственным сильно симметричным относительно вращения граней, т.е. к многогранникам, сильно симметричным относительно вращения многогранных углов, получаем и их полное перечисление. Отсюда следует, что существует 7 типов многогранников, сильно симметричных относительно вращения многогранных углов, которые не являются комбинаторно эквивалентными телам Гесселя. Класс многогранников, сильно симметричных относительно вращения граней в работе обозначается SF. Класс SF, а также и упомянутые многогранники 1-го и 2-го класса можно рассматривать как обобщение класса правильных (платоновых) многогранников. Другие обобщения правильных многогранников можно найти в работах [3],[4], [12]-[15].

141-156 96
Аннотация

Известно, что многие задачи математической физики, сводящиеся к дифференциальным уравнениям с частными производными, записанные в цилиндрических и сферических координатах, применением метода разделения переменных, в частности, приводятся к дифференциальному уравнению Бесселя и к функциям Бесселя. На практике, особенно в задачах электродинамики, небесной механики и современной прикладной математики, чаще всего используются ряды Фурье по ортогональным системам специальных функций. При этом требуется выяснить условия разложения функций в ряды по указанным специальным функциям, образующим на заданном отрезке полную ортогональную систему. Работа посвящена получению точных оценок скорости сходимости рядов Фурье по системе функций Бесселя для некоторых классов функций в гильбертовом пространстве L2 := L2([0, 1], xdx) суммируемых с квадратом функций f: [0, 1] R с весом xДоказано точное неравенство типа Джексона– Стечкина на множестве L2(r2 (

157-166 145
Аннотация

Понятие конгруэнции Риса первоначально было введено для полугрупп. Р. Тихи обобщил его на произвольные универсальные алгебры. Обозначим через нулевую конгруэнцию алгебры A. Конгруэнция Qалгебры A, представляющаяся как Q= B2 ∪ △ для некоторой подалгебры Bалгебры A, называется конгруэнцией Риса. Подалгебра Bалгебры Aназывается подалгеброй Риса, если B2 ∪△ есть конгруэнция алгебры A. Алгебра называется алгеброй Риса, если любая ее подалгебра является подалгеброй Риса. В работе вводятся понятия рисовски простой алгебры и конгруэнц-алгебры Риса. Неодноэлементная универсальная алгебра называется рисовски простой, если любая ее конгруэнция Риса является тривиальной. Конгруэнц-алгеброй Риса называется алгебра, в которой любая конгруэнция является конгруэнцией Риса. Алгеброй с операторами называется универсальная алгебра с дополнительной системой операторов — унарных операций, действующих как эндоморфизмы относительно основных операций. Получены некоторые условия, при которых алгебра с одним оператором и произвольной основной сигнатурой является алгеброй Риса. Для алгебр из этого же класса найдено необходимое условие, при котором они являются конгруэнц-алгебрами Риса. Получено необходимое условие рисовской простоты для произвольной алгебры с оператором, унарный редукт которой является связным унаром с неподвижным элементом, не содержащим узловых элементов, кроме, может быть, неподвижного. Операцией почти единогласия называется n-арная операция (n> 3), удовлетворяющая тождествам (х, . . . , x, y) = (x, . . . , x, y, x) = . . . = (y, x, . . . , x) = xВ тернарном случае qназывается операцией большинства. Полностью описаны алгебры Риса и конгруэнц-алгебры Риса в классе алгебр с одним оператором и основной операцией почти единогласия g(n), заданной следующим образом: g(3) (x1, x2, x3) = m(x1, x2, x3) и q(n)(x1, x2, . . . , xn) = m(g(n1)(x1, x2, . . . , xn1), xn1xn) для n > 3. Через m(x1, x2, x3здесь обозначается операция большинства, заданная автором на произвольном унаре в соответствии с подходом, предложенным В.К. Карташовым, и перестановочная с унарной.

 

167-179 78
Аннотация

В статье изучаются drl-полукольца. Полученные результаты верны также для drl-полугрупп, поскольку drl-полукольцом будет drl-полугруппа с нулевым умножением. Указанные алгебры имеют связь с двумя проблемами: 1) существует ли абстрактная конструкция, объединяющая как булевы алгебры, так и решеточно упорядоченные группы? (Г. Биркгоф); 2) рассмотреть решеточно упорядоченные полукольца (Л. Фукс). Одной из возможных конструкций, удовлетворяющей условиям первой проблемы, является drl-полугруппа, определенная K. L. N. Swamy в 1965 г. Как решение второй проблемы в 1981 г. Rango Rao ввел в обиход l-полукольцо. Для последней алгебры мы используем название drl-полукольца. В настоящей статье основным объектом исследования является drl-полукольцо. Нами обобщаются результаты Swamy, полученные им для drl-полугрупп, а в некоторых случаях уточняются. Известно, что любое drl-полукольцо раскладывается в прямую сумму S= L(S) R(S) положительно упорядоченного drl-полукольца L(S) и l-кольца R(S)Указывается условие, при котором L(S) обладает наименьшим и наибольшим элементами (теорема 2). В теореме 3 найдены необходимые и достаточные условия разложения drl-полукольца в прямую сумму l-кольца и брауэровой решетки, а в теореме 4 — l-кольца и булевой алгебры. Теоремы 5 и 6 характеризуют l-кольцо и аддитивно сократимое drl-полукольцо в терминах симметрической разности. Наконец, мы показываем, что произвольная конгруэнция на drl-полукольце является отношением Берна.

180-184 104
Аннотация

In this article we prove that, if integer polynomial Psatisfies |P(w)|p< Hw, then for  > 2n2 and sufficiently large H the root belongs to the field of p-adic numbers.

185-193 102
Аннотация

Целью статьи является представление подхода А. В. Малышева к исследованию и доказательству гипотезы Минковского (с уточнениями С. Дэвиса (C. Davis)) о критическом определителе области |x|p+ |y|p< 1 для p > 1 и краткое изложение метода Малышева и полученных на его основе результатов.

Юбилеи

203-210 115
Аннотация

Данная работа посвящена семидесятилетию доктора физико-математических наук, профессора Василия Ивановича Берника. В ней приводятся биографические данные, краткий анализ его научных работ и педагогической и организационной деятельности. В работу включён список из 80 основных научных работ В. И. Берника.



Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)