Preview

Чебышевский сборник

Расширенный поиск

ON A. V. MALYSHEV’S APPROACH TO MINKOWSKI’S CONJECTURE CONCERNING THE CRITICAL DETERMINANT OF THE REGION |x|p + |y|p < 1 for p > 1

https://doi.org/10.22405/2226-8383-2016-17-4-185-193

Полный текст:

Аннотация

Целью статьи является представление подхода А. В. Малышева к исследованию и доказательству гипотезы Минковского (с уточнениями С. Дэвиса (C. Davis)) о критическом определителе области |x|p+ |y|p< 1 для p > 1 и краткое изложение метода Малышева и полученных на его основе результатов.

Об авторе

N. M. Glazunov
National Aviation University
Россия


Список литературы

1. Korkin A., Zolotarev G. 1872, “Sur les formes quadratiques positives quaternaires”, Math. Ann., vol. 5, 581–583.

2. H. Minkowski, Diophantische Approximationen, Leipzig: Teubner (1907).

3. H. Minkowski, Geometrie der Zahlen, Berlin–Leipzig: Teubner (1910).

4. L. J. Mordell, Lattice points in the region |Ax4|+|By4| ≥ 1, J. London Math. Soc. 16 , 152–156 (1941).

5. C. Davis, Note on a conjecture by Minkowski, J. London Math. Soc., 23, 172–175 (1948).

6. J. Cassels, An Introduction to the Geometry of Numbers, Berlin: Springer-Verlag (1971).

7. H. Cohn, Minkowski’s conjectures on critical lattices in the metric {||p + ||p}1/p, Annals of Math., 51, (2), 734–738 (1950).

8. G. Watson, Minkowski’s conjecture on the critical lattices of the region |x|p + |y|p ≤ 1 , (I), (II), Jour. London Math. Soc., 28, (3, 4), 305–309, 402–410 (1953).

9. A. Malyshev, Application of computers to the proof of a conjecture of Minkowski’s from geometry of numbers. I, Zap. Nauchn. Semin. LOMI, 71, 163–180 (1977).

10. A. Malyshev, Application of computers to the proof of a conjecture of Minkowski’s from geometry of numbers. II, Zap. Nauchn. Semin. LOMI, 82, 29–32 (1979).

11. A. Malyshev, A. Voronetsky, The proof of Minkowski’s conjecture concerning the critical determinant of the region |x|p + |y|p < 1 for p > 6, Acta arithm., v. 71, 447–458 (1975).

12. N. Glazunov, A. V. Malyshev, On Minkowski’s critical determinant conjecture,Kibernetika, No. 5, 10–14 (1985).

13. N. Glazunov, A. Malyshev. The proof of Minkowski‘s conjecture concerning the critical determinant of the region |x|p+|y|p < 1 near p = 2,(in Russian), Doklady Akad. Nauk Ukr.SSR ser.A, 7 .P.9–12 (1986).

14. N. Glazunov, A. Golovanov, A. Malyshev, Proof of Minkowski’s hypothesis about the critical determinant of |x|p+|y|p < 1 domain, Research in Number Theory 9. Notes of scientific seminars of LOMI. 151 Leningrad: Nauka. 40–53 (1986).

15. Mumford D. Towards an Enumerative Geometry of the Moduli Space of Curves. Arithmetic and Geometry. Vol. II. Progress in Math., pp.271 - 328, 1983.

16. Harris J., Morrison J., Moduli of curves. GTM 187, Springer, Berlin-N.Y, 1998.

17. R. E. Moore. Interval Analysis. Prentice Hall, Englewood Cliffs, NJ, 1966.

18. G. Alefeld, J. Herzberger. Introduction to Interval Computations. Academic Press, NY, 1983.

19. Yu. I. Shokin. Interval’nij Analiz. Nauka. Seb. District. Novosibirsk, 1981 (in Russian).

20. Applications of Interval Computations (R. Baker Kearfott and Vladik Kreinovich (Eds.) Kluwer Academic Publlishers. 1996.

21. Scientific Computing, Validated Numerics, Interval Methods (Walter Kr‥amer and J‥urgen Wolff von Gudenberg (Eds.)) Kluwer Academic/Plenum Publlishers. NY. 2001.

22. N. M. Glazunov. Interval arithmetics for evaluation of real functions and its implementation on vector-pipeline computers (in Russian), Issues of Cybernetics (Voprosi Kibernetiki). Kernel Software for Supercomputers, Moscow. Acad. of Sci. USSR, P.91-101 (1990).


Для цитирования:


Glazunov N.M. ON A. V. MALYSHEV’S APPROACH TO MINKOWSKI’S CONJECTURE CONCERNING THE CRITICAL DETERMINANT OF THE REGION |x|p + |y|p < 1 for p > 1. Чебышевский сборник. 2016;17(4):185-193. https://doi.org/10.22405/2226-8383-2016-17-4-185-193

For citation:


Glazunov N.M. ON A. V. MALYSHEV’S APPROACH TO MINKOWSKI’S CONJECTURE CONCERNING THE CRITICAL DETERMINANT OF THE REGION |x|p + |y|p < 1 for p > 1. Chebyshevskii Sbornik. 2016;17(4):185-193. (In Russ.) https://doi.org/10.22405/2226-8383-2016-17-4-185-193

Просмотров: 178


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)