UPPER AND LOWER ESTIMATES OF THE NUMBER OF ALGEBRAIC POINTS IN SHORT INTERVALS
https://doi.org/10.22405/2226-8383-2017-18-4-115-126
Abstract
The distribution of algebraic numbers is quite complicated. Probably this is why they are rarely used as dense sets. Nevertheless, A. Baker and W. Schmidt proved in 1970 that the distribution of algebraic numbers still have some kind of uniformity on long intervals, which they called regularity. Recently many works have appeared addressing the problems concerning the lengths of the intervals on which real algebraic numbers have regularity property. It was discovered that for any integer Q > 1 there are intervals of length 0.5Q−1, which don’t contain algebraic numbers of any degree n and of height H(α) ≤ Q. At the same time it’s possible to find such c0 = c0(n) that for any c > c0 algebraic numbers on any interval of length exceeding cQ−1 have regularity property. Such "friendly" to algebraic numbers intervals are intervals free of rational numbers with small denominators and algebraic numbers of small degree and height. In order to find algebraic numbers we build integral polynomials with small values on an interval and large height using Minkowski’s linear forms theorem. It turns out that for "most" points x of an interval these polynomials have similar and nice characteristics (degree, height, module of polynomial value at point x). These characteristics are sufficient for building algebraic numbers on an interval. In this paper we prove existence of algebraic numbers of high degree on “very short“ intervals.
About the Authors
V. I. BernikRussian Federation
Minsk.
A. G. Gusakova
Russian Federation
Minsk.
A. S. Kudin
Russian Federation
Minsk.
References
1. Weyl, H. 1916, “¨Uber die Gleichverteilung von Zahlen mod. Eins“, Mathematische Annalen, vol. 77, pp. 313-352.
2. Baker, A., Schmidt, W.M. 1970, “Diophantine approximation and Hausdorff dimension“, Proc. London Math. Soc. (3), vol. 21, pp. 1-11.
3. Khintchine, A. 1924, “Einige Sa¨tze u¨ber Kettenbru¨che, mit Anwendungen auf die Theorie der Diophantischen Approximationen“, Mathematische Annalen, vol. 92, pp. 115-125.
4. Bernik V.I. 1989, “The exact order of approximating zero by values of integral polynomials“, Acta Arith., vol. 53, no. 1, pp. 17-28.
5. Beresnevich V.V. 1999, “On approximation of real numbers by real algebraic numbers“, Acta Arith., vol. 50, no. 2, pp. 97-112.
6. Beresnevich V.V. 2002, “A Groshev type theorem for convergence on manifolds“, Acta Math. Hungarica., vol. 94, no. 1-2, pp. 99-130.
7. Bernik V.I., Kleinbock D. & Margulis G.A. 2001, “Khintchine-type theorems on manifolds: the convergence case for standard and multiplicative versions“, Internat. Math. Res. Notices., no. 9, pp. 453-486.
8. Beresnevich V.V., Bernik V.I., Kleinbock D. & Margulis G.A. 2002, “Metric Diophantine approximation: The Khintchine-Groshev theorem for nondegenerate manifolds“, Mosc. Math. J., vol. 2, no. 2, pp. 203-225.
9. Bernik V.I., Vasilyev D.V. 1999, “A Khinchine-type theorem for integer-valued polynomials of a complex variable“, Proc. Inst. Math., vol. 3, pp. 10-20.
10. Beresnevich V.V., Bernik V.I. & Kovalevskaya E.I. 2005, “Metric theorems on the approximation of p-adic numbers“, J. Number Theory., vol. 111, no. 1, pp. 33-56.
11. Bernik V.I., Budarina N.V. & Dickinson D. 2008, “A divergent Khintchine theorem in the real, complex, and p-adic fields“, Lith. Math. J., vol. 48, no. 2, pp. 158-173.
12. Bernik V.I., Budarina N.V. & Dickinson D. 2010, “Simultaneous Diophantine approximation in the real, complex, and p-adic fields“, Math. Proc. Cambridge Phil. Soc., vol. 149, no. 2, pp. 193-216.
13. Kuipers L., Niederreiter H. 1974, “Uniform distribution of sequences“, Wiley, New York, 390 pp.
14. Bernik V.I., Dodson M.M. 1999, “Metric Diophantine Approximation on Manifolds (Cambridge Tracts in Mathematics)“, Cambridge University Press, Cambridge, 172 pp.
15. Bugeaud Y. 2004, “Approximation by Algebraic Numbers (Cambridge Tracts in Mathematics)“, Cambridge University Press, Cambridge, 274 pp.
16. Bernik V.I., G¨otze F. 2015, “Distribution of real algebraic numbers of arbitrary degree in short intervals“, Izvestiya: Mathematics, vol. 79, no. 1, pp. 18-39.
17. Kaliada D. 2012, “Distribution of real algebraic numbers of a given degree“, Dokl. Nats. Akad. Nauk Belarusi, vol. 56, no. 3, pp. 28–33.
18. Bernik V.I., G¨otze F., Gusakova A.G. 2016, “On points with algebraically conjugate coordinates close to smooth curves“, Moscow J. of Comb. and Numb. Theor., vol. 6, no. 2-3, pp. 57-100.
19. Bernik V.I. 1983, “Application of the Hausdorff dimension in the theory of Diophantine approximations“, Acta Arith., vol. 42, no. 3, pp. 219-253.
20. G¨otze F., Gusakova A. 2016, “H. On algebraic integers in short intervals & near smooth curves“, Acta Arith., vol. 60, no. 2, pp. 219-253.
21. Sprindzhuk V.G. 1965, “A proof of Mahler’s conjecture on the measure of the set of S-numbers“, Izv. Akad. Nauk SSSR Ser. Mat., vol. 29, no. 2, pp. 379-436.
22. Sprindzhuk V.G. 1967, “Mahler’s Problem in Metric Number Theory“, Nauka i Tehnika, Minsk, 184 pp.
23. Cassels J.W.S. 1957, “An Introduction to Diophantine Approximation (Cambridge Tracts in Mathematics and Mathematical Physics, №45)“, Cambridge University Press, Cambridge, 168 pp.
24. Budarina N.V., G¨otze F. 2013, “Distance between Conjugate Algebraic Numbers in Clusters“, Mat. Zametki., vol. 94, no. 5, pp. 780-783.
Review
For citations:
Bernik V.I., Gusakova A.G., Kudin A.S. UPPER AND LOWER ESTIMATES OF THE NUMBER OF ALGEBRAIC POINTS IN SHORT INTERVALS. Chebyshevskii Sbornik. 2017;18(4):115-126. (In Russ.) https://doi.org/10.22405/2226-8383-2017-18-4-115-126