Preview

Chebyshevskii Sbornik

Advanced search

GEOMETRIZATION OF THE GENERALIZED FIBONACCI NUMERATION SYSTEM WITH APPLICATIONS TO NUMBER THEORY

https://doi.org/10.22405/2226-8383-2016-17-2-88-112

Abstract

Generalized Fibonacci numbers { F (g) i } are defined by the recurrence relation F (g) i+2 = gF(g) i+1 + F (g) i with the initial conditions F (g) 0 = 1, F (g) 1 = g. These numbers generater representations of natural numbers as a greedy expansions n = ∑k i=0 εi(n)F (g) i , with natural conditions on εi(n). In particular, when g = 1 we obtain the well-known Fibonacci numeration system. The expansions obtained by g > 1 are called representations of natural numbers in generalized Fibonacci numeration systems.

This paper is devoted to studying the sets F (g) (ε0, . . . , εl), consisting of natural numbers with a fixed end of their representation in the generalized Fibonacci numeration system. The main result is a following geometrization theorem that describe the sets F (g) (ε0, . . . , εl) in terms of the fractional parts of the form {nτg}, τg = √ g 2+4−g 2 . More precisely, for any admissible ending (ε0, . . . , εl) there exist effectively computable a, b ∈ Z such that n ∈ F (g) (ε0, . . . , εl) if and only if the fractional part {(n + 1)τg} belongs to the segment [{−aτg}; {−bτg}]. Earlier, a similar theorem was proved by authors in the case of classical Fibonacci numeration system.

As an application some analogues of classic number-theoretic problems for the sets F (g) (ε0, . . . , εl) are considered. In particular asymptotic formulaes for the quantity of numbers from considered sets belonging to a given arithmetic progression, for the number of primes from considered sets, for the number of representations of a natural number as a sum of a predetermined number of summands from considered sets, and for the number of solutions of Lagrange, Goldbach and Hua Loken problem in the numbers of from considered sets are established.

About the Authors

E. P. Davlet’yarova
Federal State Educational Institution of Higher Education "Vladimir State University named after Alexander G. and Nicholay G. Stoletovs" (VlSU)
Russian Federation

Associate Professor of the Department of Informatics and Computing Engineering,

600000, Vladimir, Gorky St., 87



A. A. Zhukova
Full name of the institution: Federal State Educational Institution of Higher Education "Russian Academy of National Economy and Public Administration under the President of Russian Federation" Vladimir branch
Russian Federation

Candidate of Physical and Mathematical Sciences, Head of Postgraduate Studies, Research and International activities Department; Associate Professor, Department of Information Technology,

600017, Vladimir, Gorky St., 59 a



A. V. Shutov
Federal State Educational Institution of Higher Education "Vladimir State University named after Alexander G. and Nicholay G. Stoletovs" (VlSU)
Russian Federation
Candidate of Physical and Mathematical Sciences, 

Associate Professor of the Department of Management and Informatics in Technical and Economic Systems,

600000, Vladimir, Gorky St., 87



References

1. Hecke E. 1921. "Eber Analytische Funktionen und die Verteilung van Zahlen mod Eins", Math. Sem. Hamburg Univ., no. 5, pp. 54-76.

2. Knuth D.E. 1988. "Fibonacci multiplication", Appl. Math. Lett., Vol. 1, pp. 57-60. doi:10.1016/0893-9659(89)90131-6.

3. Pinner C.G. 1997. "On Sums of Fractional Parts {nα+γ}", J. Number Theory, Vol. 65, pp. 48-73. doi:10.1006/jnth.1997.2080.

4. Van Ravenstein T. 1988. "The three gap theorem (Steinhaus conjecture)", J. Austral. Math. Soc. Ser. A, Vol. 45, pp. 360-370. doi:10.1017/S1446788700031062.

5. Shutov A.V. 2007. "New estimates in the Hecke-Kesten problem ", Analytic and Probabilistic Methods in Number Theory, A. Laurincikas and E. Manstavicius (Eds), pp. 190-203. Vilnius:TEV

6. Weyl H. 1910. "Uber die Gibbs’sche Erscheinung und verwandte ¨Konvergenzph¨anomene", Rendicontidel Circolo Mathematico di Palermo, no. 30, pp. 377-407.

7. Vinogradov I.M. 1937. "Novyj metod v analiticheskoj teorii chisel", Trudy MIAN, Vol. 10, pp. 5-122. (Russian)

8. Graham R., Knuth D., Patashnik O. 1994. "Concrete Mathematics ", AddisonWesley.[9] Gricenko S.A., Mot’kina N.N. 2009. "Zadacha Hua-Lokena s prostymi chislami special’nogo vida", DAN respubliki Tadzhikistan, Vol. 52, no. 7, pp. 497-500. (Russian)

9. Gricenko S.A., Mot’kina N.N. 2010. "O nekotoryh additivnyh zadachah teorii chisel", Nauchnye vedomosti BelGU. Serija Matematika. Fizika, Vol. 5(76), no. 18, pp. 83-87. (Russian)

10. Gricenko S.A., Mot’kina N.N. 2009. "Ob odnom variante ternarnoj problemy Gol’dbaha", DAN respubliki Tadzhikistan, Vol. 52, no. 6, pp. 413-417. (Russian)

11. Davletj’yarova E.P., Zhukova A.A., Shutov A.V. 2013. "Geometrizacija sistemy schislenija Fibonacci i ee prilozhenija k teorii chisel", Algebra i analiz, Vol. 25,

12. no. 6, pp. 1-23. (Russian) translation in St. Petersburg Mathematical Journal, 2014, 25:6, 893-907. doi:10.1090/S1061-0022-2014-01321-0.

13. Zhuravlev V.G. 2007. "Odnomernye kvazireshetki Fibonacci i ih prilozhenija k diofantovym uravnenijam i algoritmu Evklida", Algebra i analiz, Vol. 19, no. 3, pp. 177-208. (Russian) translation in St. Petersburg Mathematical Journal, 2008, 19:3, 431-454. doi:10.1090/S1061-0022-08-01005-4.

14. Zhuravlev V.G. 2007. "Odnomernye razbienija Fibonacci", Izv. RAN. Ser. matem., Vol. 71, no. 2, pp. 89-122. (Russian) translation in Izvestiya: Mathematics, 2007, 71:2, 307-340. doi: 10.1070/IM2007v071n02ABEH002358.

15. Zhuravlev V.G. 2006. "Summy kvadratov nad ◦-kol’com Fibonacci", Zapiski nauchnogo seminara POMI, Vol. 337, pp. 165-190. (Russian) translation in Journal of Mathematical Sciences, 2007, 143:3, 3108-3123. doi: 10.1007/s10958-007-0195-1.

16. Zhuravlev V.G. 2008. "Uravnenie Pellja nad ◦-kol’com Fibonacci", Zapiski nauchnogo seminara POMI, Vol. 350, pp. 139-159. (Russian) translation in Journal of Mathematical Sciences, 2008, 150:3, 2084-2095. doi: 10.1007/s10958-008-0123-z.

17. Zhuravlev V.G. 2008. "Chetno-fibonachchevy chisla: binarnaja additivnaja zadacha, rasprdelenie po progressijam i spectr", Algebra i analiz, Vol. 20, no. 3, pp. 18-46. (Russian) translation in St. Petersburg Mathematical Journal, 2009, 20:3, 339-360. doi: 10.1090/S1061-0022-09-01051-6.

18. Kuipers L., Niederreiter G. 1974. "Uniform Distribution of Sequences ", New York, Wiley.

19. Krasil’shhikov V.V., Shutov A.V. 2007. "Nekotorye voprosy vlozhenija reshetok v odnomernye kvaziperiodicheskie razbienija", Vestnik SamGU. Estestvennonauchnaja serija, no. 7(57), pp. 84-91. (Russian)

20. Krasil’shhikov V.V., Shutov A.V. 2009. "Odnomernye kvaziperiodicheskie razbienija, dopuskajushhie vlozhenie progressij", Izvestija vuzov. Matematika, no. 7, pp. 3-9. (Russian). translation in Russian Mathematics, 2009, 53:7, 1-6. doi: 10.3103/S1066369X09070019.

21. Matijasevich Ju.V. 1968. "Svjaz’ sistem uravnenij v slovah i dlinah s 10-j problemoj Gilberta", Zapiski nauchnyh seminarov LOMI, Vol. 8, pp. 132-144. (Russian)

22. Matijasevich Ju.V. 1968. "Dve redukcii 10-j problemy Gilberta", Zapiski nauchnyh seminarov LOMI, Vol. 8, pp. 145-158. (Russian)

23. Shvagireva I.K. 2010. "Binarnye additivnye zadachi nad ◦-progessijami Fibonachchi", Materialy VII mezhdunarodnoj konferencii "Algebra i teorija chisel: sovremennye problemy i prilozhenija posvjashhennoj pamjati professora Anatolija Alekseevicha Karatsuby, Tula, 11-16 maja 2010 goda TGPU, Tula, pp. 198-200. (Russian)

24. Shutov A.V. 2010. "Arifmetika i geometrija odnomernyh kvazireshetok", Chebyshevskii sbornik, Vol. 11, pp. 255-262. (Russian)

25. Shutov A.V. 2010. "Neodnorodnye diofantovy priblizhenija i raspredelenie drobnyh dolej", Fundamental’naja i prikladnaja matematika, Vol. 16, no. 6, pp. 189-202. (Russian). translation in Journal of Mathematical Sciences (New York), 2012, 182:4, 576-585. doi: 10.1007/s10958-012-0762-y.

26. Shutov A.V. 2004. "O raspredelenii drobnyh dolej", Chebyshevskii sbornik, Vol. 5, no. 3, pp. 112-121. (Russian)

27. Shutov A.V. 2005. "O raspredelenii drobnyh dolej II", Issledovanija po algebre, teorii chisel, funkcional’nomu analizu i smezhnym voprosam, no. 3, pp. 146-158. (Russian)

28. Shutov A.V. 2011. "Ob odnoj additivnoj zadache s chislami special’nogo vida", Matematika, informatika i metodika ih prepodavanija. Materialy Vserossijskoj konferencii, posvjashhennoj 110-letiju matematicheskogo fakul’teta MPGU. M., pp. 102-104. (Russian)

29. Shutov A.V. 2013. "Ob odnoj additivnoj zadache s drobnymi doljami", Nauchnye vedomosti BelGU. Serija Matematika. Fizika, Vol. 5(148), no. 30, pp. 111-120. (Russian)

30. Shutov A.V. 2004. "Perenormirovki vrashhenij okruzhnosti", Chebyshevskii sbornik, Vol. 5, no. 4, pp. 125-143. (Russian)

31. Shutov A.V. 2007. "Posledovatel’nosti Sturma: grafy Rauzy i forcing", Chebyshevskii sbornik, Vol. 8, no. 2, pp. 128-139. (Russian)

32. Shutov A.V. 2004. "Proizvodnye povorotov okruzhnosti i podobie orbit", Zapiski nauchnyh seminarov POMI, Vol. 314, pp. 272-284. (Russian). translation in Journal of Mathematical Sciences, 2006, 133:6, 1765-1771. doi: 10.1007/s10958-006-0088-8.

33. Shutov A.V. 2006. "Sistemy schislenija i mnozhestva ogranichennogo ostatka", Chebyshevskii1 sbornik, Vol. 7, no. 3, pp. 110-128. (Russian)


Review

For citations:


Davlet’yarova E.P., Zhukova A.A., Shutov A.V. GEOMETRIZATION OF THE GENERALIZED FIBONACCI NUMERATION SYSTEM WITH APPLICATIONS TO NUMBER THEORY. Chebyshevskii Sbornik. 2016;17(2):88-112. (In Russ.) https://doi.org/10.22405/2226-8383-2016-17-2-88-112

Views: 565


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)