Preview

Chebyshevskii Sbornik

Advanced search

ON SQUARES IN SPECIAL SETS OF FINITE FIELDS

https://doi.org/10.22405/2226-8383-2016-17-2-56-63

Abstract

A large part of number theory deals with arithmetic properties of numbers with “missing digits” (that is numbers which digits in a number system with a fixed base belong to a given set). The present paper explores the analog of such a similar problem in the finite field.

We consider the linear vector space formed by the elements of the finite field Fq with q = p r over Fp. Let {a1, . . . , ar} be a basis of this space. Then every element x ∈ Fq has a unique representation in the form Pr j=1 cjaj with cj ∈ Fp; the coefficients cj may be called “digits”. Let us fix the set D ⊂ Fp and let WD be the set of all elements x ∈ Fq such that all its digits belong to the set D. In this connection the elements of Fp \ D may be called “missing digits”. In a recent paper of C.Dartyge, C.Mauduit, A.S´ark¨ozy it has been shown that if the set D is quite large then there are squares in the set WD. In this paper more common problem is considered.

Let us fix subsets D1, . . . , Dr ⊂ Fp and consider the set W = W(D1, . . . , Dr) of all elements x ∈ Fq such that cj ∈ Dj for all 1 ≤ j ≤ r. We prove an estimate for the number of squares in the set W, which implies the following assertions:

1) if Qr i=1 |Di | ≥ (2r − 1)rp r(1/2+ε) for some ε > 0, then the asymptotic formula |W ∩ Q| = = |W| 1 2 + O(p −ε/2 ) is valid;

2) if Qr i=1 |Di | ≥ 8(2r − 1)rp r/2 , then there exist nonzero squares in the set W.

About the Author

M. Gabdullin
Московский государственный университет им. М. В. Ломоносова; Институт математики и механики Уральского отделения Российской академии наук
Russian Federation
Moscow


References

1. Banks, W. D., Conflitti, A. & Shparlinski, I. E. 2002, “Character sums over integers with restricted g-ary digits”, Illinois J. Math., vol. 46, no. 3, pp. 819–836.

2. Banks, W. D. & Shparlinski, I. E. 2004, “Arithmetic properties of numbers with restricted digits”, Acta Arith., vol. 112, pp. 313–332.

3. Col, S. 2006, “Propri´et´es multiplicatives d’entiers soumis `a des contraintes digitales”, Th`ese de doctorat de math´ematiques de l’Universit´e Henri Poincar´e-Nancy, vol. 1.

4. Col, S. 2009, “Diviseurs des nombres ellips´ephiques. Periodica Mathematica Hungarica”, vol. 58, no. 1, pp. 1–23.

5. Coquet, J. 1978, “On the uniform distribution modulo one of some subsequences of polynomial sequences”, J. Number Theory, vol. 10, no. 3, pp. 291–296.

6. Coquet, J. 1980, “On the uniform distribution modulo one of some subsequences of polynomial sequences”, J. Number Theory, vol. 12, no. 2, pp. 244–250.

7. Coquet, J. 1983, “Graphes connexes, repr´esentation de entiers et ´equir epartition”, J. Number Theory, vol. 16, no. 3, pp. 363–375.

8. Dartyge, C. & Mauduit, C. 2000, “Nombres presque premiers dont l‘´ecriture en base r ne comporte pas certain chiffres”, Journal of Number Theory, vol. 81, pp. 270–291.

9. Dartyge, C. & Mauduit, C. 2001, “Ensembles de densit´e nulle contenant des entiers poss´edant au plus deux facteurs premiers”, Journal of Number Theory, vol. 91, pp. 230–255.

10. Drmota, M. & Mauduit, C. 2010, “Weyl sums over integers with affine digits restriction”, Journal of Number Theory, vol. 30, pp. 2404–2427.

11. Erd˝os, P., Mauduit, C. & S´ark¨ozy, A. 1998, “On the arithmetic properties of integers with missing digits I: Distribution in residue classes”, Journal of Number Theory, vol. 70, no. 2, pp. 99–120.

12. Konyagin, S. V., Mauduit, C. & S´ark¨ozy, A. 2000, “On the number of prime factors of integers characterized by digits properties”, Period. Math. Hung., vol. 40, pp. 37–52.

13. Dartyge, C. & S´ark¨ozy, A. 2013, “The sum of digits function in the finite field”, Proc. Amer. Math. Soc., vol. 141, no. 12, pp. 4119–4124.

14. Dartyge, C., Mauduit, C. & S´ark¨ozy, A. 2015, “Polynomial values and generators with missing digits in finite fields”, Functiones et Approximatio, vol. 52, no. 1, pp. 65–74.

15. Gabdullin, M. R., “On squares in subsets of finite fields with restrictions on coefficients of basis decomposition”, arXiv: 1602.06603v1 (Russian).

16. Dietmann, R., Elsholtz, C. & Shparlinski, I. E. “Prescribing the binary digits of squarefree numbers and quadratic residues”, arXiv: 1601.04754v1.

17. Wan, D. 1997, “Generators and irreducible polynomials over finite fields”, Math. Comp., vol. 66, pp. 1195–1212.

18. Winterhof, A. 2001, “Characters sums, primitive elements, and powers in finite fields”, Journal of Number Theory, vol. 91, pp. 153–161.


Review

For citations:


Gabdullin M. ON SQUARES IN SPECIAL SETS OF FINITE FIELDS. Chebyshevskii Sbornik. 2016;17(2):56-63. (In Russ.) https://doi.org/10.22405/2226-8383-2016-17-2-56-63

Views: 552


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)