Preview

Chebyshevskii Sbornik

Advanced search

ON ALGEBRAIC INTEGERS AND MONIC POLYNOMIALS OF SECOND DEGREE

https://doi.org/10.22405/2226-8383-2016-17-1-117-129

Abstract

In this paper we consider the algebraic integers of second degree and reducible quadratic monic polynomials with integer coefficients. Let Q > 4 be an integer. Define Ωn(Q, S) to be the number of algebraic integers of degree n and height 6 Q belonging to S ⊆ R. We improve the remainder term of the asymptotic formula for Ω2(Q, I), where I is an arbitrary interval.  Denote by R(Q) the set of reducible monic polynomials of second degree with integer coefficients and height 6 Q. We obtain the formula #R(Q) = 2 XQ k=1 τ (k) + 2Q + hp Q i − 1, where τ (k) is the number of divisors of k. Besides we show that the number of real algebraic integers of second degree and height 6 Q has the asymptotics Ω2(Q,R) = 8Q2 −16 3 Q p Q − 4QlnQ + 8(1 − γ)Q + O p Q , where γ is the Euler constant. It is known that the density function of the distribution of algebraic integers of degree n uniformly tends to the density function of algebraic numbers of degree n−1. We show that for n = 2 the integral of their difference over the real line has nonzero limit as height of numbers tends to infinity.

About the Author

D. V. Koleda
Institute of Mathematics of the National Academy of Sciences of Belarus
Russian Federation
junior researcher


References

1. Barroero, F. (2014). “Counting algebraic integers of fixed degree and bounded height”, Monatshefte f¨ur Mathematik, vol. 175, no. 1, pp. 25–41.

2. Brown, H. & Mahler, K. (1971). “A generalization of Farey sequences: Some exploration via the computer”, J. Number Theory, vol. 3, no. 3, pp. 364–370.

3. Chandrasekharan, K. (1970). “Arithmetical functions”, vol. 167 of Die Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Berlin, Heidelberg.

4. Chela, R. (1963). “Reducible polynomials”, J. London Math. Soc., vol. 38, no. 1, pp. 183–188.

5. Chern, S.-J. & Vaaler, J. D. (2001). “The distribution of values of Mahler’s measure”, J. Reine Angew. Math., vol. 540, pp. 1–47.

6. Cobeli, C. & Zaharescu, A. (2003). “The Haros-Farey sequence at two hundred years”, Acta Univ. Apulensis Math. Inform., vol. 5, pp. 1–38.

7. Davenport, H. (1951). “On a principle of Lipschitz”, J. London Math. Soc, vol. 26, pp. 179–183. Davenport, H. (1964). Corrigendum: “On a principle of Lipschitz”, J. London Math. Soc., vol. 39, p. 580.

8. Hardy, G. H. (1916). “On Dirichlet’s divisor problem”, Proc. London Math. Soc. (2), vol. 15, pp. 1–25.

9. Huxley, M. N. (2003). “Exponential sums and lattice points. III”, Proc. London Math. Soc. (3), vol. 87, no. 3, pp. 591–609.

10. Koleda, D. V. (2014a). “On the density function of the distribution of real algebraic numbers”, arXiv preprint, arXiv:1405.1627.

11. Koleda, D. V. (2014b). “The distribution of algebraic integers of given degree on the real line”, arXiv preprint, arXiv:1407.2861.

12. Montgomery, H. L. & Vaughan, R. C. (2007). “Multiplicative number theory. I. Classical theory”, vol. 97 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge.

13. Vorono¨ı, G. (1904). “Sur une fonction transcendante et ses applications `a la sommation de quelques s´eries”, Ann. Sci. ´ Ecole Norm. Sup. (3), vol. 21, pp. 207–267 & 459–533.

14. Kaliada, D. U. (2012). “Distribution of real algebraic numbers of a given degree”, Dokl. Nats. Akad. Nauk Belarusi, vol. 56, no. 3, pp. 28–33. (In Belarusian.)

15. Kaliada, D. U. (2015). “Distribution of algebraic integers of a given degree in the real line”, Dokl. Nats. Akad. Nauk Belarusi, vol. 59, no. 1, pp. 18–22. (In Belarusian.)

16. Koleda, D. V. (2013). “Distribution of real algebraic numbers of the second degree”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, no. 3, pp. 54–63. (In Russian.)

17. Koleda, D. V. (2015). “On the asymptotic distribution of algebraic numbers with growing naive height”, Chebyshevskii Sb., vol. 16, no. 1, pp. 191–204. (In Russian.)


Review

For citations:


Koleda D.V. ON ALGEBRAIC INTEGERS AND MONIC POLYNOMIALS OF SECOND DEGREE. Chebyshevskii Sbornik. 2016;17(1):117-129. (In Russ.) https://doi.org/10.22405/2226-8383-2016-17-1-117-129

Views: 484


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)