Preview

Chebyshevskii Sbornik

Advanced search

On the sequence of the first binary digits of the fractional parts of the values of a polynomial

https://doi.org/10.22405/2226-8383-2021-22-1-482-487

Abstract

Let 𝑃(𝑛) be a polynomial, having an irrational coefficient of the highest degree. A word 𝑤 (𝑤 = (𝑤𝑛), 𝑛 ∈ N) consists of a sequence of first binary numbers of {𝑃(𝑛)} i.e. 𝑤𝑛 = [2{𝑃(𝑛)}].
Denote by 𝑇(𝑘) the number of different subwords of 𝑤 of length 𝑘 . We’ll formulate the main result of this paper.

Theorem. There exists a polynomial 𝑄(𝑘), depending only on the power of the polynomial 𝑃, such that 𝑇(𝑘) = 𝑄(𝑘) for sufficiently great 𝑘.

About the Authors

Alexey Yakovlevich Kanel-Belov
M. V. Lomonosov Moscow State University, Bar-Ilan University
Russian Federation


Gregory Vyacheslavovich Kondakov
Moscow Institute of Physics and Technology
Russian Federation

candidate of physical and mathematical sciences



Ivan Viktorovich Mitrofanov
Ecole Normale Superieur, PSL Research University
France


Mehdi Golafshan
Moscow Institute of Physics and Technology
Russian Federation


Ivan Andreevich Reshetnikov
Moscow Institute of Physics and Technology
Russian Federation


References

1. И.М. Виноградов. К вопросу о распределении дробных частей многочлена. Изв. АН., сер. матем. 1961, т.25 с.749-754

2. Л. Кейперс, Г. Ниддеррейтер Равномерное распределение последовательностей. М.:Наука, 1985.

3. Л.Д. Пустыльников Распределение дробных частей значений многочлена. УМН, 1993 т.48, выпуск 4 (292), с 131 – 166.

4. R.N. Izmailov and A.A. Vladimirov. Dimension of aliasing structures. An International Journal of Systems. Applications in Computer Graphics., 1993, Vol 17, No 5.

5. M. Morse and G.A. Hedlund. Symbolic dynamics II: Sturmian trajectories. Amer. J. Math., 62:1–42, 1940.

6. H. Weyl. ¨Uber der gleichverteilung von zahlen mod. 1. Math. Ann., 77:313–352, 1916.


Review

For citations:


Kanel-Belov A.Ya., Kondakov G.V., Mitrofanov I.V., Golafshan M., Reshetnikov I.A. On the sequence of the first binary digits of the fractional parts of the values of a polynomial. Chebyshevskii Sbornik. 2021;22(1):482-487. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-1-482-487

Views: 417


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)