On the sequence of the first binary digits of the fractional parts of the values of a polynomial
https://doi.org/10.22405/2226-8383-2021-22-1-482-487
Abstract
Let 𝑃(𝑛) be a polynomial, having an irrational coefficient of the highest degree. A word 𝑤 (𝑤 = (𝑤𝑛), 𝑛 ∈ N) consists of a sequence of first binary numbers of {𝑃(𝑛)} i.e. 𝑤𝑛 = [2{𝑃(𝑛)}].
Denote by 𝑇(𝑘) the number of different subwords of 𝑤 of length 𝑘 . We’ll formulate the main result of this paper.
Theorem. There exists a polynomial 𝑄(𝑘), depending only on the power of the polynomial 𝑃, such that 𝑇(𝑘) = 𝑄(𝑘) for sufficiently great 𝑘.
About the Authors
Alexey Yakovlevich Kanel-BelovRussian Federation
Gregory Vyacheslavovich Kondakov
Russian Federation
candidate of physical and mathematical sciences
Ivan Viktorovich Mitrofanov
France
Mehdi Golafshan
Russian Federation
Ivan Andreevich Reshetnikov
Russian Federation
References
1. И.М. Виноградов. К вопросу о распределении дробных частей многочлена. Изв. АН., сер. матем. 1961, т.25 с.749-754
2. Л. Кейперс, Г. Ниддеррейтер Равномерное распределение последовательностей. М.:Наука, 1985.
3. Л.Д. Пустыльников Распределение дробных частей значений многочлена. УМН, 1993 т.48, выпуск 4 (292), с 131 – 166.
4. R.N. Izmailov and A.A. Vladimirov. Dimension of aliasing structures. An International Journal of Systems. Applications in Computer Graphics., 1993, Vol 17, No 5.
5. M. Morse and G.A. Hedlund. Symbolic dynamics II: Sturmian trajectories. Amer. J. Math., 62:1–42, 1940.
6. H. Weyl. ¨Uber der gleichverteilung von zahlen mod. 1. Math. Ann., 77:313–352, 1916.
Review
For citations:
Kanel-Belov A.Ya., Kondakov G.V., Mitrofanov I.V., Golafshan M., Reshetnikov I.A. On the sequence of the first binary digits of the fractional parts of the values of a polynomial. Chebyshevskii Sbornik. 2021;22(1):482-487. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-1-482-487