Preview

Chebyshevskii Sbornik

Advanced search

A compactness result for non-periodic structures and its application to homogenization of diffusion-convection equations

https://doi.org/10.22405/2226-8383-2020-21-4-140-151

Abstract

The paper proves the strong compactness of the sequence $\{\tilde{c}^{\,\varepsilon}(\boldsymbol{x},t)\}$ in $\mathbb{L}_{2}(\Omega_{T})$,
$\Omega_{T}=\Omega\times(0,\\T)$, $\Omega\subset \mathbb{R}^{3}$, bounded in the space $\mathbb{W}^{1,0}_{2}(\Omega_{T})$ with
the sequence of time derivatives
$\Big\{ \displaystyle \frac{\partial}{\partial t}\big(\chi(\boldsymbol{x},t,\frac{\boldsymbol{x}}{\varepsilon})\Big.$
$\Big.\tilde{c}^{\,\varepsilon}(\boldsymbol{x},t)\big) \Big\}$ bounded in the space $\mathbb{L}_{2}\big((0,T);\mathbb{W}^{-1}_{2}(\Omega)\big)$,
where characteristic function $\chi(\boldsymbol{x},t,\boldsymbol{y})$ is 1-periodic in a variable $\displaystyle \boldsymbol{y}\in Y= \left(-\frac{1}{2},\frac{1}{2} \right)^{3}\subset \mathbb{R}^{3}$.

As an application we consider the homogenization of a diffusion-convection equation in non-periodic structure, given by 1-periodic in $\boldsymbol{y}$ characteristic function $\chi(\boldsymbol{x},t,\boldsymbol{y})$ with a sequence of divergent-free velocities $\{\boldsymbol{v}^{\varepsilon}(\boldsymbol{x},t)\}$ weakly convergent in $\mathbb{L}_{2}(\Omega_{T})$.

About the Authors

Anvarbek Mukatovich Meirmanov
Moscow Technical University of Communications and Informatics
Russian Federation
Doctor of Physical and Mathematical Sciences, Professor


Oleg Vladimirovich Galtsev
Belgorod State National Research University
Russian Federation
PhD in Physics and Mathematics, Assistant professor


Review

For citations:


Meirmanov A.M., Galtsev O.V. A compactness result for non-periodic structures and its application to homogenization of diffusion-convection equations. Chebyshevskii Sbornik. 2020;21(4):140-151. (In Russ.) https://doi.org/10.22405/2226-8383-2020-21-4-140-151

Views: 443


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)