Hyperbolic parameter of approximation of quadratic algebraic lattices
https://doi.org/10.22405/2226-8383-2020-21-3-241-249
Abstract
The article considers a variant of the approximation of algebraic lattices by integer ones in
the quadratic case, the set of their local minima is written out explicitly, and it is also shown
that for these integer approximations of algebraic quadratic lattices it is possible to construct
efficient algorithms for calculating the hyperbolic parameter.
About the Author
Alexander Valer’evich RodionovRussian Federation
Senior Lecturer, Department of Algebra, Mathematical Analysis and Geometry
References
1. Korobov, N. M. 2004, "Numerical-theoretic methods in approximate analysis", Moscow: mtsnmo. 288 p.
2. {Dobrovolskii N. M.} Hyperbolic zeta function of lattices. / Dep. inVINITI 24.08.84, N 6090-84.
3. L. P. Dobrovolskaya, M. N. Dobrovolsky, N. M. Dobrovolsky, N. N. Dobrovolsky, 2012, ``Multidimensional number-theoretic grids and lattices and algorithms for finding optimal coefficients'', Tula: Publishing house Tul. state ped. University named after L. N. Tolstoy, 283 p.
4. L. P. Dobrovolskaya, M. N. Dobrovol'skii, N. M. Dobrovolskii, N. N. Dobrovol'skii, 2012, ``Hyperbolic zeta functions of grids and lattices and the calculation of optimal coefficients'', Chebyshev Collection, vol. 13, iss. 4 (44), pp. 4-107.
5. E. I. Klimova, N. N. Dobrovolsky, 2018, ``Quadratic fields and quadrature formulas'', Proceedings of the XV International Conference Algebra, number theory and discrete geometry: modern problems and applications dedicated to the centenary of the birth of the doctor Mathematical Sciences, Professor of the Lomonosov Moscow State University Nikolai Mikhailovich Korobov. - Tula: Publishing house of Tul. state ped. un-ta them. L. N. Tolstoy, pp. 308–310.
6. Korobov N. M., ``Number-theoretic methods in approximate analysis'', M.: Fizmat-giz, 1963.
7. Minkowski H., 1896, ``Généralisation de la théorie des fractions continues'', Ann. Sci.École Norm. Sup. (3) 13, pp. 41–60.
8. A. V. Mikhlyaeva, 2018, ``Approximation of quadratic algebraic lattices and grids by integer lattices and rational grids'', Chebyshevskii Sbornik, vol. 19, issue 3, pp. 241-256.
9. A. V. Rodionov, 2018, ``On rational approximations of algebraic grids'', Proceedings of the XV International Conference Algebra, number theory and discrete geometry: modern problems and applications dedicated to the centenary of the birth of Doctor of Physical and Mathematical Sciences, Professor of the Moscow State University named after M.V. Lomonosov Nikolai Mikhailovich Korobov. - Tula: Publishing house Tul. state ped. un-ta them. L. N. Tolstoy, pp. 321–310.
10. {Sushkevich A. K.} ``Number theory. Elementary course'', 1954, 205 p.
11. {Frolov K. K.}, 1976, ``Upper bounds for the error of quadrature formulas on classes of functions'', DAN SSSR. vol. 231. No. 4. pp. 818-821.
12. {KK Frolov}, 1979, ``Quadrature formulas on classes of functions'', Dis. Cand. physical-mat. sciences. Moscow: Computing Center of the USSR Academy of Sciences.
13. A. Ya.Khinchin, ``Continued Fractions'', Moscow: GITTL, 1949.
Review
For citations:
Rodionov A.V. Hyperbolic parameter of approximation of quadratic algebraic lattices. Chebyshevskii Sbornik. 2020;21(3):241-249. (In Russ.) https://doi.org/10.22405/2226-8383-2020-21-3-241-249