Preview

Chebyshevskii Sbornik

Advanced search

Free rectangular n-tuple semigroups

https://doi.org/10.22405/2226-8383-2019-20-3-261-271

Abstract

An n-tuple semigroup  is a nonempty set G equipped with n binary operations $$\fbox{1}\,, \fbox{2}\,, ..., \fbox{n}\,,$$ satisfying the axioms $$(x\fbox{r} \, y) \fbox{s}\, z=x\fbox{r}\,(y\fbox{s}\,z)$$ for all $$x,y,z \in G$$ and $$r,s\in \{1,2,...,n\}.$$ This notion was considered by Koreshkov in the context of the theory of  n-tuple algebras of associative type. Doppelsemigroups are  2-tuple semigroups. The n-tuple semigroups are related to interassociative semigroups, dimonoids, trioids, doppelalgebras, duplexes, G-dimonoids, and restrictive bisemigroups. If operations of an n-tuple semigroup coincide, the  n-tuple semigroup becomes a semigroup. So, n-tuple semigroups are a generalization of semigroups. The class of all n-tuple semigroups forms a variety. Recently, the constructions of the free n-tuple semigroup, of the free commutative n-tuple semigroup, of the free k-nilpotent n-tuple semigroup and of the free product of arbitrary n-tuple semigroups were given. The class of all rectangular n-tuple semigroups, that is,   n-tuple semigroups  with n  rectangular semigroups, forms a subvariety of the variety of  n-tuple semigroups. In this paper, we construct the free rectangular n-tuple semigroup and characterize the least rectangular congruence on the free n-tuple semigroup.

About the Author

Anatolii Vladimirovich Zhuchok
Luhansk Taras Shevchenko National University (Starobilsk, Ukraine)
Ukraine

doctor of physical and mathematical Sciences, Professor, head of the Department of algebra and system analysis



References

1. Bagherzadeha F., Bremnera M., Madariagab S., 2017, "Jordan trialgebras and post-Jordan algebras" , J. Algebra, vol. 486, pp. 360–395.

2. Bokut L. A., Chen Y.-Q., Liu C.-H., 2010, "Gr¨obner–Shirshov bases for dialgebras" , Int. J. Algebra Comput., vol. 20, no. 3. pp. 391–415.

3. Boyd S. J., Gould M., 1999, "Interassociativity and isomorphism" , Pure Math. Appl., vol. 10, no. 1. pp. 23–30.

4. Boyd S. J., Gould M., Nelson A. W., 1996, "Interassociativity of semigroups" , Proceedings of the Tennessee Topology Conference, Nashville, TN, USA, Singapore: World Scientific. pp. 33–51.

5. Casas J. M., 2006, "Trialgebras and Leibniz 3-algebras" , Bol. Soc. Mat. Mex., vol. 12, no. 2. pp. 165–178.

6. Drouzy M., 1986, "La structuration des ensembles de semigroupes d’ordre 2, 3 et 4 par la relation d’interassociativit´e" , Manuscript.

7. Evans T., 1971, "The lattice of semigroup varieties" , Semigroup Forum, vol. 2. pp. 1–43.

8. Givens B. N., Linton K., Rosin A., Dishman L., 2007, "Interassociates of the free commutative semigroup on n generators" , Semigroup Forum, vol. 74. pp. 370–378.

9. Gould M., Linton K. A., Nelson A. W., 2004, "Interassociates of monogenic semigroups" , Semigroup Forum, vol. 68. pp. 186–201.

10. Givens B. N., Rosin A., Linton K., 2017, "Interassociates of the bicyclic semigroup" , Semigroup Forum, vol. 94. pp. 104–122. doi:10.1007/s00233-016-9794-9.

11. Hewitt E., Zuckerman H. S., 1968–1969, "Ternary operations and semigroups" , Semigroups: Proceedings 1968 Wayne State U. Symposium on Semigroups, K. W. Folley, ed., Academic Press (New York), pp. 55–83.

12. Koreshkov N. A., 2008, "n-Tuple algebras of associative type" , Russian Mathematics (Izvestiya VUZ. Matematika), vol. 52, no. 12. pp. 28–35.

13. Koreshkov N. A., 2010, "Nilpotency of n-tuple Lie algebras and associative n-tuple algebras" , Russian Mathematics (Izvestiya VUZ. Matematika), vol. 54, no. 2. pp. 28–32.

14. Koreshkov N. A., 2014, "Associative n-tuple algebras" , Math. Notes, vol. 96, no. 1. pp. 38–49.

15. Loday J.-L., 2001, "Dialgebras" , In: Dialgebras and related operads: Lect. Notes Math. Berlin: Springer-Verlag, vol. 1763. pp. 7–66.

16. Loday J.-L., Ronco M. O., 2004, "Trialgebras and families of polytopes" , Contemp. Math., vol. 346. pp. 369–398.

17. Pirashvili T., 2003, "Sets with two associative operations" , Centr. Eur. J. Math., vol. 2, pp. 169–183.

18. Richter B., 1997, "Dialgebren, Doppelalgebren und ihre Homologie" , Diplomarbeit, Universitat Bonn, Available at http://www.math.uni-hamburg.de/home/richter/publications.html.

19. Schein B. M., 1965, "Restrictive bisemigroups" , Izv. Vyssh. Uchebn. Zaved. Mat., vol. 1, no. 44. pp. 168–179 (in Russian).

20. Zhuchok A. V., 2019, "Free commutative trioids" , Semigroup Forum, vol. 98, no. 2. pp. 355–368, doi: 10.1007/s00233-019-09995-y.

21. Zhuchok A. V., 2017, "Free left n-dinilpotent doppelsemigroups" , Commun. Algebra, vol. 45, no. 11. pp. 4960–4970, doi: 10.1080/00927872.2017.1287274.

22. Zhuchok A. V., 2018, "Free n-tuple semigroups" , Math. Notes, vol. 103, no. 5. pp. 737–744, doi: 10.1134/S0001434618050061.

23. Zhuchok A. V., 2013, "Free products of dimonoids" , Quasigroups Relat. Syst., vol. 21, no. 2. pp. 273–278.

24. Zhuchok A. V., 2017, "Free products of doppelsemigroups" , Algebra Univers., vol. 77, no. 3. pp. 361–374, doi: 10.1007/s00012-017-0431-6.

25. Zhuchok A. V., 2018, "Relatively free doppelsemigroups" , Monograph series Lectures in Pure and Applied Mathematics, Germany, Potsdam: Potsdam University Press, vol. 5, 86 p.

26. Zhuchok A. V., 2011, "Semilatties of subdimonoids" , Asian-Eur. J. Math., vol. 4, no. 2. pp. 359–371, doi: 10.1142/S1793557111000290.

27. Zhuchok A. V., 2018, "Structure of free strong doppelsemigroups" , Commun. Algebra, vol. 46, no. 8. pp. 3262–3279, doi: 10.1080/00927872.2017.1407422.

28. Zhuchok A. V., 2017, "Structure of relatively free dimonoids" , Commun. Algebra, vol. 45, no. 4. pp. 1639–1656, doi: 10.1080/00927872.2016.1222404.

29. Zhuchok A. V., 2015, "Trioids" , Asian-Eur. J. Math., vol. 8, no. 4, 1550089 (23 p.), doi: 10.1142/S1793557115500898.

30. Zhuchok A. V., Demko M., 2016, "Free n-dinilpotent doppelsemigroups" , Algebra Discrete Math., vol. 22, no. 2, pp. 304–316.

31. Zhuchok A. V., Knauer K., 2018, "Abelian doppelsemigroups" , Algebra Discrete Math., vol. 26, no. 2, pp. 290–304.

32. Zhuchok A. V., Koppitz J., 2019, "Free products of n-tuple semigroups" , Ukrainian Math. J., vol. 70, no. 11, pp. 1710–1726, doi: 10.1007/s11253-019-01601-2.

33. Zhuchok A. V., Zhuchok Yul. V., 2019, "Free k-nilpotent n-tuple semigroups" , Fundamental and Applied Mathematics (in Russian). Accepted.

34. Zhuchok A. V., Zhuchok Yul.V., 2016, "Free left n-dinilpotent dimonoids" , Semigroup Forum, vol. 93, no. 1. pp. 161–179, doi: 10.1007/s00233-015-9743-z.

35. Zhuchok A. V., Zhuchok Yul. V., Koppitz J., "Free rectangular doppelsemigroups" , Journal of Algebra and its Applications, doi: 10.1142/S0219498820502059.

36. Zhuchok A. V., Zhuchok Yul. V., Zhuchok Y. V., 2019, "Certain congruences on free trioids" , Commun. Algebra, vol. 47, no. 12. pp. 5471–5481, doi: 10.1080/00927872.2019.1631322.

37. Zhuchok Yul. V., 2014, "On one class of algebras" , Algebra Discrete Math., vol. 18, no. 2, pp. 306–320.


Review

For citations:


Zhuchok A.V. Free rectangular n-tuple semigroups. Chebyshevskii Sbornik. 2019;20(3):261-271. (In Russ.) https://doi.org/10.22405/2226-8383-2019-20-3-261-271

Views: 634


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)