Preview

Чебышевский сборник

Расширенный поиск

n-короны в разбиениях тора на множества ограниченного остатка

https://doi.org/10.22405/2226-8383-2019-20-3-246-260

Полный текст:

Аннотация

Теория геометрических подстановок Арно-Ито позволяет строить последовательности обобщенных перекладывающихся разбиений d-мерного тора. Эти разбиения состоят из параллелепипедов d + 1 типа, а действие некоторого сдвига тора на разбиении сводится к перекладыванию d+1 центрального параллелепипеда. Более того, множество вершин всех параллелепипедов разбиения представляет собой фрагмент орбиты нуля относительно этого сдвига тора. Рассматриваемые разбиения активно используются в различных задачах теории чисел, комбинаторики и теории динамических систем. В настоящей работе изучается локальная структура разбиений тора, получаемых на основе геометрических подстановок. n-короной параллелепипеда называется множество всех параллелепипедов, отстоящих от данного на расстояние не более n в естественной метрике разбиения. Задача состоит в описании всех возможных типов n-корон. Каждому параллелепипеду разбиения естественным образом присваивается номер – его номер в орбите соответствующего центрального параллелепипеда относительно сдвига тора. Доказано, что множество всех номеров распадается на конечное число полуинтервалов, определяющих возможные типы n-корон. Более того, доказано, что границы соответствующих полуинтервалов определяются номерами параллелепипедов, входящих в n-корону набора из d + 1 центрального параллелепипеда. Показано, что этот результат можно рассматривать как некоторое многомерное обобщение знаменитой теоремы о трех длинах. Ранее аналогичное описание было получено для 1-корон разбиений тора получаемых при помощи одной конкретной геометрической подстановки: подстановки Рози. Кроме того, аналогичные результаты ранее были получены для ряда квазипериодических разбиений плоскости. В заключении сформулирован ряд направлений для дальнейшего исследования.

Об авторах

Алла Адольфовна Жукова

Россия

кандидат физико-математических наук, доцент, доцент кафедры информационных технологий, Российская академия народного хозяйства и государственной службы при Президенте Российской Федерации, Владимирский филиал (г. Владимир).



Антон Владимирович Шутов

Россия

кандидат физико-математических наук, доцент, доцент кафедры вычислительной техники и систем управления, Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых (ВлГУ) (г. Владимир).



Список литературы

1. Arnoux, P. & Ito, S. 2001, “Pisot substitutions and Rauzy fractals“, Bull. Belg. Math. Soc. Simon Stevin., vol. 8, issue 2, pp. 181–207.

2. Floreik, K. 1951, “Une remarque sur la repartition des nombres m $$ xi $$ mod 1“, Coll. Math. Wroclaw., vol. 2, pp. 323–324.

3. Lagarias, J. C. & Pleasants, P. A. B. 2003, “Repetitive Delone sets and quasicrystals“, Ergod. Th. Dyn. Sys., vol. 23. pp. 831–867. doi: https://doi.org/10.1017/S0143385702001566.

4. Pytheas Fogg, N. 2001, “Substitutions in dynamics, arithmetics and combinatorics“, Springer. doi: 10.1007/b13861.

5. Rauzy, G. 1982, “Nombres alge′briques et substitutions“, Bull. Soc. Math. France, vol. 110, pp. 147–178. doi: https://doi.org/10.24033/bsmf.1957.

6. Ravenstein, T. V. 1988, “The three gap theorem (Steinhaus conjecture)“, J. Austral. Math. Soc. Ser. A, vol. 45, pp. 360–370.

7. Schattschneider, D. & Dolbilin, N. 1998, “One corona is enough for the Euclidean plane“, Quasicrystals and discrete geometry (Toronto. ON. 1995), Fields Inst. Monogr. 10, Amer. Math. Soc. Providence. RI, pp. 207–246.

8. Shutov, A. V. & Maleev, A. V. 2008, “Quasiperiodic planetilings based on stepped surfaces“, Acta Crystallographica. Section A: Foundations of Crystallography, vol. 64, no. 3, pp. 376–382. doi: 10.1107/S0108767308005059.

9. Shutov, A. V., Maleev, A. V. & Zhuravlev, V. G. 2010, “Complex quasiperiodic self-similar tilings: Their parameterization, boundaries, complexity, growth and symmetry“, Acta Crystallographica. Section A: Foundations of Crystallography, vol. 66, no. 3, pp. 427–437. doi: 10.1107/S0108767310006616.

10. Siegel, A. & Thuswaldner, J. M. 2009, “Topological properties of Rauzy fractals“, Mem. Soc. Math. Fr. N.S., vol. 118, pp. 1–144. doi: 10.24033/msmf.430.

11. Slater, N. 1967, “Gaps and steps for the sequence n $$ theta $$ mod 1“, Proc. Camb. Phil. Soc., vol. 63, pp. 1115–1123. doi: https://doi.org/10.1017/S0305004100042195.

12. S´os, V. T. 1958, “On the distribution mod 1 of the sequence n $$ alpha $$“, Ann. Univ. Sci. Budapest E¨otv¨os Sect. Math., vol. 1, pp. 127–134.

13. ´Swierczkowski, S. 1958, “On successive settings of an arc on the circumference of a circle“, Fund. Math., vol. 46, pp. 187–189.

14. Zhuravlev, V. G. 2007, “On additivity property of the complexity function related to rauzy tiling“, Analytic and Probabilistic Methods in Number Theory, pp. 240–254.

15. Zhukova, A. A. & Shutov, A. V. 2019, “Rauzy substitution and local structure of torus tilings“, Chebyshevskii Sbornik, vol. 20, no. 4.

16. Zhuravlev, V. G. 2016, “Two-dimensional approximations by the method of dividing toric tilings“, Journal of Mathematical Sciences, vol. 217, issue 1, pp. 54–64. doi: 10.1007/s10958-016-2955-2.

17. Zhuravlev, V. G. 2015, “Dividing toric tilings and bounded remainder sets“, Journal of Mathematical Sciences, vol. 217, issue 1, pp. 65–80. doi: 10.1007/s10958-016-2956-1.

18. Zhuravlev, V. G. 2016, “Differentiation of induced toric tilings and multi-dimensional approximations of algebraic numbers“, Journal of Mathematical Sciences, vol. 222, issue 5, pp. 544–584. doi: 10.1007/s10958-017-3321-8.

19. Zhuravlev, V. G. 2017, “Induced bounded remainder sets“, St. Petersburg Math. J., vol. 28, pp. 671–688. doi: https://doi.org/10.1090/spmj/1466.

20. Zhuravlev, V. G. 2013, “Moduli of toric tilings into bounded remainder sets and balanced words“, St. Petersburg Math. J., vol. 24, pp. 601–629. doi: https://doi.org/10.1090/S1061-0022-2013-01256-8.

21. Zhuravlev, V. G. 2007, “One-dimensional Fibonacci tilings“, Izvestiya: Mathematics, vol. 71, no. 2, pp. 281–323. doi: https://doi.org/10.4213/im621.

22. Zhuravlev, V. G. 2006, “Rauzy tilings and bounded remainder sets on the torus“, Journal of Mathematical Sciences, vol. 137, no. 2, pp. 4658–4672. doi: https://doi.org/10.1007/s10958-006-0262-z.

23. Zhuravlev, V. G. & Maleev, A. V. 2007, “Layer-by-layer growth of quasi-periodic Rauzy tiling“, Crystallography Reports, vol. 52, no. 2. pp. 180–186. doi: 10.1134/S1063774507020022.

24. Zhuravlev, V. G. & Maleev, A. V. 2007, “Complexity function and forcing in the 2D quasiperiodic Rauzy tiling“, Crystallography Reports, vol. 52, no. 4, pp. 582–588. doi: 10.1134/S1063774507040037.

25. Krasilshchikov, V. V. & Shutov, A. V. 2011, “One-dimensional quasiperiodic tilings and their applications“, VF RUK, Vladimir.

26. Kuznetsova, D. V. & Shutov, A. V. 2015, “Exchanged toric tilings, Rauzy substitution, and bounded remainder sets“, Mathematical Notes, vol. 98, issue 5–6, pp. 932–948. doi: 10.1134/S0001434615110267.

27. Manuylov, N. N. 2005, “Self-similarity of some sequences of points on a circle“, Journal of Mathematical Sciences, vol. 129, issue 3, pp. 3860–3867. doi: https://doi.org/10.1007/s10958-005-0322-9.

28. Manuylov, N. N. 2006, “Direct renormalizations on the one-dimensional torus“, Journal of Mathematical Sciences, vol. 133, issue 6, pp. 1686–1692. doi: https://doi.org/10.1007/s10958-006-0080-3.

29. Shutov, A. V. 2012, “Shifting on the torus and the multidimensional Hecke-Kesten problem“, Scientific notes of Oryol State University, vol. 6, no. 2, pp. 249–253.

30. Shutov, A. V. 2018, “Substitutions and bounded remainder sets“, Chebyshevskii Sbornik, vol. 19, no. 2, pp. 501–522. doi: 10.22405/2226-8383-2018-19-2-501-522.

31. Shutov, A. V. 2006, “Derivatives of circle rotations and similarity of orbits“, Journal of Mathematical Sciences, vol. 133, issue 6, pp. 1765–1771. doi: https://doi.org/10.1007/s10958-006-0088-8.

32. Shutov, A. V. 2006, “Number systems and bounded remainder sets“, Chebyshevskii Sbornik, vol. 7, no. 3, pp. 110–128.

33. Shutov, A.V. & Maleev, A. V. 2017, “Strong parameterization and coordination encirclements of graph of Penrose tiling vertices“, Crystallography Reports, vol. 62, no. 4, pp. 535–542. doi: 10.1134/S1063774517040216.


Для цитирования:


Жукова А.А., Шутов А.В. n-короны в разбиениях тора на множества ограниченного остатка. Чебышевский сборник. 2019;20(3):246-260. https://doi.org/10.22405/2226-8383-2019-20-3-246-260

For citation:


Zhukova A.A., Shutov A.V. n-crowns in toric tilings into bounded remander sets. Chebyshevskii Sbornik. 2019;20(3):246-260. (In Russ.) https://doi.org/10.22405/2226-8383-2019-20-3-246-260

Просмотров: 19


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)