TO THE DISTRIBUTION OF PRIME NUMBERS IN THE POLYNOMIALS OF SECOND DEGREE WITH INTEGER COEFFICIENTS
https://doi.org/10.22405/2226-8383-2013-14-1-56-60
Abstract
In this paper, we prove: Theorem. Each volume A > A′ there are more A 5 ln A of polynomials of second degree with integer coefficients, senior coefficients are equal to two, each of which contains more A 5 ln1+ε A simple. (ε > 0 — constant)
About the Author
I. I. IllyssovRussian Federation
References
1. Прахар К. Распределение простых чисел. М.: Мир, 1967.
2. Серпинский В. О решении уравнений в целых числах. М.: Гос. изд-во физ.- мат. литературы, 1961.
3. Серпинский В. Что мы знаем и чего не знаем о простых числах. М.: Гос. изд-во физ.-мат. литературы, 1963.
Review
For citations:
Illyssov I.I. TO THE DISTRIBUTION OF PRIME NUMBERS IN THE POLYNOMIALS OF SECOND DEGREE WITH INTEGER COEFFICIENTS. Chebyshevskii Sbornik. 2013;14(1):56-60. (In Russ.) https://doi.org/10.22405/2226-8383-2013-14-1-56-60