Preview

Chebyshevskii Sbornik

Advanced search

Generalized Gaussian sums and Bernoulli polynomials

https://doi.org/10.22405/2226-8383-2019-20-1-282-291

Abstract

The conception of Generalized Gaussian Sum $$G_f(m)$$ for  a periodic arithmetical functon with a period, is equal prime number q, for integers m,n is introduce: $$ G_f(m)=\sum_{n=1}^{q-1}\left(\frac nq\right)f\left(\frac{mn}q\right). $$ Here are considered the particular cases $$f(x)=B_\nu(\{x\}), \nu\geq 1,$$ where $$B_\nu(x)$$ - Bernoulli polynomials. The paper uses the technique of finite Fourier series. If the function $$f\left(\frac{k}{q}\right)$$ is defined at $$k=0,1,\ldots,q-1,$$ it can be decomposed into a finite Fourier series $$ f\left(\frac{k}{q}\right)=\sum_{m=0}^{q-1}c_me^{2\pi i\frac{mk}{q}}, \quad c_m=\frac{1}{q}\sum_{k=0}^{q-1}f\left(\frac{k}{q}\right)e^{-2\pi i\frac{mk}{q}}. $$ By decomposition into a finite Fourier series of a generalized Gauss sum $$ G_\nu(m)=G_\nu(m;B_\nu)=\sum_{n=1}^{q-1}\left(\frac nq\right)B_\nu{\left(\left\{x+\frac{mn}q\right\}\right)} $$ for $$\nu=1$$ and $$\nu=2$$ , new formulas are found that Express the value of the Legendre symbol through the full sums of periodic functions. This circumstance makes it possible to obtain new analytical properties of the corresponding Dirichlet series and arithmetic functions, which will be the topic of the following works. An important property of the sums $$G_1$$ and $$G_2,$$ namely: $$G_1\ne 0,$$ if $$q\equiv 3\pmod 4$$ and $$G_1=0,$$ if $$q\equiv 1\pmod 4;$$ $$G_2= 0,$$ if $$q\equiv 3\pmod 4$$ and $$G_2=\frac 1{q^2}\sum\limits_{n=1}^{q-1}n^2\left(\frac nq\right),$$ if $$q\equiv 1\pmod 4.$$

About the Author

Vladimir Nikolaevich Chubarikov

Russian Federation

Doctor of Physics and Mathematics, Professor, Head of the Department of Mathematical and Computer Methods of Analysis, Dean of the Mechanics and Mathematics Faculty of Moscow State University named after M. V. Lomonosov, Moscow



References

1. Vinogradov I. M. Method of Trigonometric Sums in Number Theory, 2nd Ed., M:, Nauka, 1980, pp. 144.

2. Hua L.-K. Selected Papers. New York Inc.: Springer Verlag, 1983, pp. 888.

3. Arkhipov G. I. Selected Papers. Orjol: Publ.House of Orjol Univ., 2013. pp. 464.

4. Arkhipov G. I., Chubarikov V. N., Karatsuba A. A. Trigonometric Sums in Number Theory and Analysis. De Gruyter expositions in mathematics; 39. Berlin, New York, 2004. pp. 554.

5. Chubarikov,V. N. Azerbaijan-Turkey-Ukrainian Int.Conf.“Mathematical Analysis, Differential Equations and their Applications”. Abstracts.(September 08–13, 2015, Baku—Azerbaijan). Linear arithmetic sums and Gaussian multiplication theorem. 2015, p. 38.

6. Chubarikov,V. N. An elementary deduction of the estimate of of the complete rational arithmetical sum of polynomial // Chebyshev Sbornik. — 2015. — v.16, №3(55). — p.452–461.

7. Chubarikov,V. N. The exponent of a convergence of the mean value of the complete rational arithmetical sums// Chebyshev Sbornik. — 2015. — v.16, № 4(56). — p.303–318.

8. Chubarikov,V. N. Arithmetical sums of values of polynomial // Doklady of RAS — 2016. — v.466, № 2. — p.152–153.

9. Chubarikov,V. N. Complete rational arithmetical sums // Vestnik of Moscow State University. Serija I. Math., Mech. 2015. № 1. p. 60–61.

10. Gauss K. F. Works on the Number Theory. — M.: Publ. House of Academy of Sci. USSR, 1959, 979 pp.

11. Ireland K., Rosen M. Classical introduction to modern number theory.

12. Davenport H. Multiplicative number theory, Markham Publ. Comp., Chicago, 1967.

13. Prachar K. Primzahlverteilung, Springer - Verlag, Berlin - G¨ottingen - Heidelberg, 1957.

14. Hasse H. Vorlesungen ¨uber zahlentheorie, Berlin, 1950.

15. Borevich Z. I., Shafarevich I. R. Number theory. M: Nauka, 1985.

16. Gelfond A. O. Calculus of finite differences. — M.: Nauka, 1967. pp. 376.

17. Korobov N. M. Number-theoretical methods in numerical analysis. 2nd Ed. / M: MCCME, 2004. pp. 288.


Review

For citations:


Chubarikov V.N. Generalized Gaussian sums and Bernoulli polynomials. Chebyshevskii Sbornik. 2019;20(1):282-291. (In Russ.) https://doi.org/10.22405/2226-8383-2019-20-1-282-291

Views: 554


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)