A generalized limit theorem for the periodic Hurwitz zeta-function
https://doi.org/10.22405/2226-8383-2019-20-1-259-269
Abstract
About the Author
Audrone RimkevicieneLithuania
doctor of mathematics, associated professor
References
1. Billingsley, P. 1968, “Convergence of Probability Measures“, John Wiley and Sons, New York.
2. Bohr, H. & Jessen, B. 1930, “ ¨Uber die Wertverteilung der Riemanschen Zetafunktion, Erste Mitteilung“, Acta Math., vol. 54, pp. 1–35.
3. Bohr, H. & Jessen, B. 1932, “ ¨Uber die Wertverteilung der Riemanschen Zetafunktion, Zweite Mitteilung“, Acta Math., vol. 58, pp. 1–55.
4. Genien˙e, D. & Rimkeviˇcien˙e, A. 2013, “A joint limit theorem for periodic Hurwitz zeta-functions with algebraic irrational parameters“, Math. Modelling and Analysis, vol. 18, no. 1, pp. 149–159.
5. Javtokas, A. & Laurinˇcikas, A. 2006, “On the periodic Hurwitz zeta-function“, Hardy-Ramanujan J., vol. 29, no. 3, pp. 18–36.
6. Laurinˇcikas, A. 1996, “Limit Theorems for the Riemann Zeta-Function“, Kluwer, Dordrecht, Boston, London.
7. Laurinˇcikas, A. 2006, “The joint universality for periodic Hurwitz zeta-functions“, Analysis, vol. 26, no. 3, pp. 419–428.
8. Matsumoto, K. 2004, “Probabilistic value-distribution theory of zeta-functions“, Sugaku Expositions, vol. 17, pp. 51–71.
9. Miseviˇcius, G. & Rimkeviˇcien˙e, A. 2013, “Joint limit theorems for periodic Hurwitz zetafunctions. II“, Annales Univ. Sci. Budapest., Sect. Comp., vol. 41, pp. 173–185.
10. Rimkeviˇcien˙e, A. 2010, “Limit theorems for the periodic Hurwitz zeta-function“, ˇSiauliai Math. Semin., vol. 5(13), pp. 55–69.
11. Rimkeviˇcien˙e, A. 2011, “Joint limit theorems for the periodic Hurwitz zeta-functions“, ˇSiauliai Math. Semin. vol. 6(14), pp. 53–68.
Review
For citations:
Rimkeviciene A. A generalized limit theorem for the periodic Hurwitz zeta-function. Chebyshevskii Sbornik. 2019;20(1):259-269. (In Russ.) https://doi.org/10.22405/2226-8383-2019-20-1-259-269