Preview

Chebyshevskii Sbornik

Advanced search

A generalized limit theorem for the periodic Hurwitz zeta-function

https://doi.org/10.22405/2226-8383-2019-20-1-259-269

Abstract

Probabilistic methods are used in the theory of zeta-functions since Bohr and Jessen time (1910-1935). In 1930, they proved the first theorem for the Riemann zeta-function $$\zeta(s)$$, $$s=\sigma+it$$, which is a prototype of modern limit theorems characterizing the behavior of $$\zeta(s)$$ by weakly convergent probability measures. More precisely, they obtained that, for $$\sigma>1$$, there exists the limit $$\lim_{T\to\infty} \frac{1}{T} \mathrm{J} \left\{t\in[0,T]: \log\zeta(\sigma+it)\in R\right\}, $$ where R is a rectangle on the complex plane with edges parallel to the axes, and $$\mathrm{J}A$$ denotes the Jordan measure of a set $$A\subset \mathbb{R}$$. Two years latter, they extended the above result to the half-plane $$\sigma>\frac{1}{2}$$. Ideas of Bohr and Jessen were developed by Wintner, Borchsenius, Jessen, Selberg and other famous mathematicians. Modern versions of the Bohr-Jessen theorems, for a wide class of zeta-functions, were obtained in the works of K. Matsumoto. The theory of Bohr and Jessen is applicable, in general, for zeta-functions having Euler's product over primes. In the present paper, a limit theorem for a zeta-function without Euler's product is proved. This zeta-function is a generalization of the classical Hurwitz zeta-function. Let $$\alpha$$, $$0<\alpha \leqslant 1$$, be a fixed parameter, and $$\mathfrak{a}=\{a_m: m\in \mathbb{N}_0= \mathbb{N}\cup\{0\}\}$$ be a periodic sequence of complex numbers. The periodic Hurwitz zeta-function $$\zeta(s,\alpha; \mathfrak{a})$$ is defined, for $$\sigma>1$$, by the Dirichlet series $$\zeta(s,\alpha; \mathfrak{a})=\sum_{m=0}^\infty \frac{a_m}{(m+\alpha)^s}, $$ and is meromorphically continued to the whole complex plane. Let $$\mathcal{B}(\mathbb{C})$$ denote the Borel $$\sigma$$-field of the set of complex numbers, $$\mathrm{meas}A$$ be the Lebesgue measure of a measurable set $$A\subset \mathbb{R}$$, and let the function $$\varphi(t)$$ for $$t\geqslant T_0$$ have the monotone positive derivative $$\varphi'(t)$$ such that $$(\varphi'(t))^{-1}=o(t)$$ and $$\varphi(2t) \max_{t\leqslant u\leqslant 2t} (\varphi'(u))^{-1}\ll t$$. Then it is obtained in the paper that, for $$\sigma>\frac{1}{2}$$, $$\frac{1}{T} \mathrm{meas}\left\{t\in[0,T]: \zeta(\sigma+i\varphi(t), \alpha; \mathfrak{a})\in A\right\},\quad A\in \mathcal{B}(\mathbb{C}), $$ converges weakly to a certain explicitly given probability measure on $$(\mathbb{C}, \mathcal{B}(\mathbb{C}))$$ as $$T\to\infty$$.

About the Author

Audrone Rimkeviciene
ˇSiauliai State College
Lithuania

doctor of mathematics, associated professor



References

1. Billingsley, P. 1968, “Convergence of Probability Measures“, John Wiley and Sons, New York.

2. Bohr, H. & Jessen, B. 1930, “ ¨Uber die Wertverteilung der Riemanschen Zetafunktion, Erste Mitteilung“, Acta Math., vol. 54, pp. 1–35.

3. Bohr, H. & Jessen, B. 1932, “ ¨Uber die Wertverteilung der Riemanschen Zetafunktion, Zweite Mitteilung“, Acta Math., vol. 58, pp. 1–55.

4. Genien˙e, D. & Rimkeviˇcien˙e, A. 2013, “A joint limit theorem for periodic Hurwitz zeta-functions with algebraic irrational parameters“, Math. Modelling and Analysis, vol. 18, no. 1, pp. 149–159.

5. Javtokas, A. & Laurinˇcikas, A. 2006, “On the periodic Hurwitz zeta-function“, Hardy-Ramanujan J., vol. 29, no. 3, pp. 18–36.

6. Laurinˇcikas, A. 1996, “Limit Theorems for the Riemann Zeta-Function“, Kluwer, Dordrecht, Boston, London.

7. Laurinˇcikas, A. 2006, “The joint universality for periodic Hurwitz zeta-functions“, Analysis, vol. 26, no. 3, pp. 419–428.

8. Matsumoto, K. 2004, “Probabilistic value-distribution theory of zeta-functions“, Sugaku Expositions, vol. 17, pp. 51–71.

9. Miseviˇcius, G. & Rimkeviˇcien˙e, A. 2013, “Joint limit theorems for periodic Hurwitz zetafunctions. II“, Annales Univ. Sci. Budapest., Sect. Comp., vol. 41, pp. 173–185.

10. Rimkeviˇcien˙e, A. 2010, “Limit theorems for the periodic Hurwitz zeta-function“, ˇSiauliai Math. Semin., vol. 5(13), pp. 55–69.

11. Rimkeviˇcien˙e, A. 2011, “Joint limit theorems for the periodic Hurwitz zeta-functions“, ˇSiauliai Math. Semin. vol. 6(14), pp. 53–68.


Review

For citations:


Rimkeviciene A. A generalized limit theorem for the periodic Hurwitz zeta-function. Chebyshevskii Sbornik. 2019;20(1):259-269. (In Russ.) https://doi.org/10.22405/2226-8383-2019-20-1-259-269

Views: 480


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)