The criterion of periodicity of continued fractions of key elements in hyperelliptic fields
https://doi.org/10.22405/2226-8383-2019-20-1-246-258
Abstract
Keywords
About the Authors
Vladimir Petrovich PlatonovRussian Federation
Gleb Vladimirovich Fedorov
Russian Federation
candidate of physical and mathematical sciences
References
1. Abel N. H. 1826, “Uber die Integration der Differential-Formel p dx/sqrt(R), wenn R und p ganze Functionen sind”, J. Reine Angew. Math., no. 1, pp. 185–221.
2. Chebychev P. L. 1864. “Sur l’integration de la differential”, J. Math. Pures Appl., vol. 2, no. 9, pp. 225–246.
3. Platonov, V.P. 2014, “Number-theoretic properties of hyperelliptic fields and the torsion problem in Jacobians of hyperelliptic curves over the rational number field”, Russian Math. Surveys, vol. 69, no. 1, pp. 1–34.
4. Berry, T. G. 1990, “On periodicity of continued fractions in hyperelliptic function fields”, Arch. Math., vol. 55, pp. 259–266.
5. Platonov, V.P., Fedorov, G. V. 2018, “On the problem of periodicity of continued fractions in hyperelliptic fields”, Sb. Math., vol. 209, no. 4, pp. 519–559.
6. Benyash-Krivets, V. V., Platonov, V.P. 2009, “Groups of S-units in hyperelliptic fields and continued fractions”, Sb. Math., vol. 200, no. 11, pp. 1587–1615.
7. Fedorov, G. V. 2018, “Periodic continued fractions and S-units with second degree valuations in hyperelliptic fields”, Chebyshevskii Sbornik, vol. 19, no. 3. (In Russ.)
8. Platonov, V.P., Fedorov, G. V. 2017, “On the periodicity of continued fractions in hyperelliptic fields”, Dokl. Math., vol. 95, no. 3, pp. 254–258.
9. Platonov, V.P., Fedorov, G. V. 2017, “On the periodicity of continued fractions in elliptic fields”, Dokl. Math., vol. 96, no. 1, pp. 332–335.
10. Platonov, V.P., Zhgoon, V. S., Fedorov, G. V. 2016, “Continued Rational Fractions in Hyperelliptic Fields and the Mumford Representation”, Dokl. Math., vol. 94, no. 3, pp. 692–696.
11. Platonov, V.P., Petrunin, M. M. 2018, “Groups of S-units and the problem of periodicity of continued fractions in hyperelliptic fields”, Proc. Steklov Inst. Math., vol. 302, pp. 336–357.
12. Platonov, V.P., Petrunin, M. M. 2016, “S-Units and periodicity in quadratic function fields”, Russian Math. Surveys, vol. 71, no. 5, pp. 973–975.
13. Platonov, V.P., Petrunin, M. M. 2016, “S-units in hyperelliptic fields and periodicity of continued fractions”, Dokl. Math., vol. 94, no. 2, pp. 532–537.
14. Zhgoon V. S. 2017, “On generalized jacobians and rational continued fractions in the hyperelliptic fields”, Chebyshevskii Sbornik, vol. 18, no. 4, pp. 208–220. (In Russ.)
15. Platonov, V.P., Fedorov, G. V. 2015, “S-Units and Periodicity of Continued Fractions in Hyperelliptic Fields”, Dokl. Math., vol. 92, no. 3, pp. 752–756.
16. Kubert, D. S. 1976, “Universal bounds on the torsion of elliptic curves”, Proc. London Math.Soc. (3), vol. 33, no. 2, pp. 193–237.
Review
For citations:
Platonov V.P., Fedorov G.V. The criterion of periodicity of continued fractions of key elements in hyperelliptic fields. Chebyshevskii Sbornik. 2019;20(1):246-258. (In Russ.) https://doi.org/10.22405/2226-8383-2019-20-1-246-258