On a bounded remainder set for (t,s) sequences I
https://doi.org/10.22405/2226-8383-2019-20-1-222-246
Abstract
Let $$x_0,x_1,...$$ be a sequence of points in $$[0,1)^s$$. A subset $$S$$ of $$[0,1)^s$$ is called a bounded remainder set if there exist two real numbers a and C such that, for every integer N, %We say that $$S \subset [0,1)^s$$ is a bounded remainder set with respect to the sequence $$(x_n)_{n \geq 1}$$ if there is a constant C such that $$ | {\rm card}\{n <N \; | \; x_{n} \in S\} - a N| <C . $$ Let $$ (x_n)_{n \geq 0} $$ be an s-dimensional Halton-type sequence obtained from a global function field, $$b \geq 2$$, $$\gamma =(\gamma_1,...,\gamma_s)$$, $$\gamma_i \in [0, 1)$$, with $$b$$-adic expansion $$\gamma_i= \gamma_{i,1}b^{-1}+ \gamma_{i,2}b^{-2}+...$$, $$i=1,...,s$$. In this paper, we prove that $$[0,\gamma_1) \times ...\times [0,\gamma_s)$$ is the bounded remainder set with respect to the sequence $$(x_n)_{n \geq 0}$$ if and only if \begin{equation} \nonumber \max_{1 \leq i \leq s} \max \{ j \geq 1 \; | \; \gamma_{i,j} \neq 0 \} < \infty. \end{equation}
We also obtain the similar results for a generalized Niederreiter sequences, Xing-Niederreiter sequences and Niederreiter-Xing sequences.
About the Author
Mordechay Borisovich LevinIsrael
candidat of physical and mathematical Sciences, Department of Mathematics
References
1. Beck, J., Chen, W. W. L. Irregularities of Distribution, Cambridge Univ. Press, Cambridge, 1987.
2. Bilyk, D. On Roth’s orthogonal function method in discrepancy theory, Unif. Distrib. Theory 6 (2011), no. 1, 143–184.
3. Dick, J. and Pillichshammer, F. Digital Nets and Sequences, Discrepancy Theory and Quasi-Monte Carlo Integration, Cambridge University Press, Cambridge, 2010.
4. Grepstad, S.; Lev, N. Sets of bounded discrepancy for multi-dimensional irrational rotation. Geom. Funct. Anal. 25 (2015), no. 1, 87-–133.
5. Hellekalek, P. Regularities in the distribution of special sequences, J. Number Theory, 18 (1984), no. 1, 41–55.
6. Larcher, G. Digital Point Sets: Analyis and Applications. Springer Lecture Notes in Statistics (138), pp. 167–222, 1998.
7. Levin, M. B. Adelic constructions of low discrepancy sequences, Online J. Anal. Comb. No. 5 (2010), 27 pp.
8. Levin, M. B. On the lower bound of the discrepancy of (t,s) sequences: II, Online J. Anal. Comb. No. 5 (2017), 74 pp.
9. Levin, M. B. On a bounded remainder set for a digital Kronecker sequence, arXiv: 1901.00042.
10. Levin, M. B. On a bounded remainder set for (t,s) sequences II, in preparation.
11. Niederreiter, H. Random Number Generation and Quasi-Monte Carlo Methods, in: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 63, SIAM, 1992.
12. Niederreiter, H. and Yeo, A. S. Halton-type sequences from global function fields, Sci. China Math. 56 (2013), 1467–1476.
13. Salvador, G. D. V. Topics in the Theory of Algebraic Function Fields. Mathematics: Theory & Applications. Birkhauser Boston, Inc., Boston, MA, 2006.
14. Stichtenoth, H. Algebraic Function Fields and Codes, 2nd ed. Berlin: Springer, 2009.
15. Tezuka, S. Polynomial arithmetic analogue of Halton sequences. ACM Trans Modeling Computer Simulation, 3 (1993), 99–107
Review
For citations:
Levin M.B. On a bounded remainder set for (t,s) sequences I. Chebyshevskii Sbornik. 2019;20(1):222-246. (In Russ.) https://doi.org/10.22405/2226-8383-2019-20-1-222-246