Preview

Chebyshevskii Sbornik

Advanced search

Algebraically compact abelian TI-groups

https://doi.org/10.22405/2226-8383-2019-20-1-202-211

Abstract

An abelian group G is called a TI-group if every associative ring with additive group G is filial. An abelian group G such that every (associative) ring with additive group G is an SI-ring (a hamiltonian ring) is called an SI-group (an $$SI_H$$-group). In this paper, TI-groups, as well as SI-groups and $$SI_H$$-groups are described in the class of reduced algebraically compact abelian groups.

About the Authors

Ekaterina Igorevna Kompantseva

Russian Federation

doctor of engineering, professor, Professor, Department of algebra, Moscow state pedagogical University; Professor of the Department of probability theory and mathematical statistics, Financial University under the Government of the Russian Federation, Moscow.



T. Q. T. Nguyen
Moscow state pedagogical University, Moscow
Russian Federation
postgraduate student


References

1. Beaumont, R. A. 1948, “Rings with additive groups which is the direct sum of cyclic groups”, Duke Math. J., vol. 15, no. 2, pp. 367–369.

2. Fuchs, L. 1948, “Ringe und ihre additive Gruppe”, Publ. Math. Debrecen, vol. 4, pp. 488–508.

3. Szele, T. 1949, “Zur Theorie der Zeroringe”, Math. Ann., vol. 121, pp. 242–246.

4. Redei, L. & Szele, T. 1950, “Die Ringe “erstaen Ranges”, Acta Sci. Math. (Szeged), vol. 12a, pp. 18–29.

5. Beaumont, R. A. & Pierce, R. S. 1961, “Torsion-free rings”, Illinois J. Math., vol. 5, pp. 61–98.

6. Chekhlov, A. R. 2009, “On abelian groups, in which all subgroups are ideals”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., no. 3(7), pp. 64–67.

7. Aghdam, A. M. & Karimi, F. & Najafizadeh, A. 2013, “On the subgroups of torsion-free groups which are subrings in every ring”, Ital. J. Pure Appl. Math., vol. 31, pp. 63–76.

8. Andruszkiewicz, R. & Woronowicz, M. 2017,“ On additive groups of associative and commutative rings”, J. Quaest. Math., vol. 40, no. 4, pp. 527–537.

9. Fuchs, L. 2015, “Abelian groups”, Switz.: Springer International Publishing.

10. Feigelstock, S. 1983, 1988, “Additive groups of rings”, vol. 1, vol. 2, Boston-London: Pitman Advanced Publishing Program.

11. Kompantseva, E. I. 2010, “Torsion-free rings”, J. Math. Sci., vol. 171, no. 2, pp. 213–247.

12. Kompantseva, E. I. 2014, “Absolute nil-ideals of Abelian groups”, J. Math. Sci., vol. 197, no. 5, pp. 625–634.

13. Feigelstock, S. 1997, “Additive groups of rings whose subrings are ideals”, Bull. Austral. Math. Soc., vol. 55, pp. 477–481.

14. Redei, L. 1952, “Vollidealringe im weiteren Sinn. I”, Acta Math. Acad. Sci. Hungar., vol. 3, pp. 243–268.

15. Andriyanov, V. I. 1967, “Periodic Hamiltonian rings”, Math. USSR-Sb., vol. 3, no. 2, pp. 225–242.

16. Kruse, R. L. 1968, “Rings in which all subrings are ideals”, Canad. J. Math., vol. 20, pp. 862–871.

17. Ehrlich, G. 1983-1984. “Filial rings”, Portugal. Math., vol. 42, pp. 185–194.

18. Sands, A. D. 1988, “On ideals in over-rings”, Publ. Math. Debrecen., vol. 35, pp. 273–279.

19. Andruszkiewicz, R. & Puczylowski, E. 1988, “On filial rings”, Portugal. Math., vol. 45, no. 2, pp. 139–149.

20. Filipowicz, M. & Puczylowski, E. R. 2004, “Left filial rings”, Algebra Colloq., vol. 11, pp. 335–344.

21. Andruszkiewicz, R. & Woronowicz, M. 2014, “On ????????-groups”, Recent Results in Pure and Applied Math. Podlasie., pp. 33–41.

22. Feigelstock, S. 2000, “Additive groups of commutative rings”, Quaest. Math., vol. 23, pp. 241–245.

23. Kulikov L.Ya. 1952, 1953, “Generalized primary groups. I, II”, Tr. Mosk. Mat. Obs., pp. 247–326, pp. 85–167.


Review

For citations:


Kompantseva E.I., Nguyen T. Algebraically compact abelian TI-groups. Chebyshevskii Sbornik. 2019;20(1):202-211. (In Russ.) https://doi.org/10.22405/2226-8383-2019-20-1-202-211

Views: 548


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)