Algebraically compact abelian TI-groups
https://doi.org/10.22405/2226-8383-2019-20-1-202-211
Abstract
About the Authors
Ekaterina Igorevna KompantsevaRussian Federation
doctor of engineering, professor, Professor, Department of algebra, Moscow state pedagogical University; Professor of the Department of probability theory and mathematical statistics, Financial University under the Government of the Russian Federation, Moscow.
T. Q. T. Nguyen
Russian Federation
postgraduate student
References
1. Beaumont, R. A. 1948, “Rings with additive groups which is the direct sum of cyclic groups”, Duke Math. J., vol. 15, no. 2, pp. 367–369.
2. Fuchs, L. 1948, “Ringe und ihre additive Gruppe”, Publ. Math. Debrecen, vol. 4, pp. 488–508.
3. Szele, T. 1949, “Zur Theorie der Zeroringe”, Math. Ann., vol. 121, pp. 242–246.
4. Redei, L. & Szele, T. 1950, “Die Ringe “erstaen Ranges”, Acta Sci. Math. (Szeged), vol. 12a, pp. 18–29.
5. Beaumont, R. A. & Pierce, R. S. 1961, “Torsion-free rings”, Illinois J. Math., vol. 5, pp. 61–98.
6. Chekhlov, A. R. 2009, “On abelian groups, in which all subgroups are ideals”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., no. 3(7), pp. 64–67.
7. Aghdam, A. M. & Karimi, F. & Najafizadeh, A. 2013, “On the subgroups of torsion-free groups which are subrings in every ring”, Ital. J. Pure Appl. Math., vol. 31, pp. 63–76.
8. Andruszkiewicz, R. & Woronowicz, M. 2017,“ On additive groups of associative and commutative rings”, J. Quaest. Math., vol. 40, no. 4, pp. 527–537.
9. Fuchs, L. 2015, “Abelian groups”, Switz.: Springer International Publishing.
10. Feigelstock, S. 1983, 1988, “Additive groups of rings”, vol. 1, vol. 2, Boston-London: Pitman Advanced Publishing Program.
11. Kompantseva, E. I. 2010, “Torsion-free rings”, J. Math. Sci., vol. 171, no. 2, pp. 213–247.
12. Kompantseva, E. I. 2014, “Absolute nil-ideals of Abelian groups”, J. Math. Sci., vol. 197, no. 5, pp. 625–634.
13. Feigelstock, S. 1997, “Additive groups of rings whose subrings are ideals”, Bull. Austral. Math. Soc., vol. 55, pp. 477–481.
14. Redei, L. 1952, “Vollidealringe im weiteren Sinn. I”, Acta Math. Acad. Sci. Hungar., vol. 3, pp. 243–268.
15. Andriyanov, V. I. 1967, “Periodic Hamiltonian rings”, Math. USSR-Sb., vol. 3, no. 2, pp. 225–242.
16. Kruse, R. L. 1968, “Rings in which all subrings are ideals”, Canad. J. Math., vol. 20, pp. 862–871.
17. Ehrlich, G. 1983-1984. “Filial rings”, Portugal. Math., vol. 42, pp. 185–194.
18. Sands, A. D. 1988, “On ideals in over-rings”, Publ. Math. Debrecen., vol. 35, pp. 273–279.
19. Andruszkiewicz, R. & Puczylowski, E. 1988, “On filial rings”, Portugal. Math., vol. 45, no. 2, pp. 139–149.
20. Filipowicz, M. & Puczylowski, E. R. 2004, “Left filial rings”, Algebra Colloq., vol. 11, pp. 335–344.
21. Andruszkiewicz, R. & Woronowicz, M. 2014, “On ????????-groups”, Recent Results in Pure and Applied Math. Podlasie., pp. 33–41.
22. Feigelstock, S. 2000, “Additive groups of commutative rings”, Quaest. Math., vol. 23, pp. 241–245.
23. Kulikov L.Ya. 1952, 1953, “Generalized primary groups. I, II”, Tr. Mosk. Mat. Obs., pp. 247–326, pp. 85–167.
Review
For citations:
Kompantseva E.I., Nguyen T. Algebraically compact abelian TI-groups. Chebyshevskii Sbornik. 2019;20(1):202-211. (In Russ.) https://doi.org/10.22405/2226-8383-2019-20-1-202-211