On Newman polynomials without roots on the unit circle
https://doi.org/10.22405/2226-8383-2019-20-1-195-201
Abstract
About the Author
Arturas DubickasRussian Federation
habilitated doctor of mathematics, research professor
References
1. Boyd, D. W. 1986, “Large Newman polynomials“, in: Diophantine analysis (Kensigton, 1985), London Math. Soc. Lecture Note Ser., vol.109, Cambridge Univ. Press, Cambridge, pp. 159–170.
2. Campbell, D. M., Ferguson, H. R.P. & Forcade, R. W. 1983, “Newman polynomials on |z| = 1“, Indiana Univ. Math. J., vol.32, pp. 517–525.
3. Dubickas, A. 2004, “Nonreciprocal algebraic numbers of small measure“, Comment. Math. Univ. Carolin., vol.45, pp. 693–697.
4. Goddard, B. 1992, “Finite exponential series and Newman polynomials“, Proc. Amer. Math. Soc., vol.116, pp. 313–320.
5. Filaseta, M., Finch, C. & Nicol, C. 2006, “On three questions concerning 0, 1-polynomials“, J. Th´eorie des Nombres Bordx., vol.118, pp. 357–370.
6. Finch, C. & Jones, L. 2006, “On the irreducibility of {−1, 0, 1}-quadrinomials“, Integers, vol.6, A16, 4 pp.
7. Mercer, I. 2012, “Newman polynomials, reducibility and roots on the unit circle“, Integers, vol.12, A6, 16 pp.
8. Mercer, I. 2012, “Newman polynomials not vanishing on the unit circle“, Integers vol.12, A67, 7 pp.
9. Konyagin, S. V. 1999, “On the number of irreducible polynomials with 0, 1 coefficients“, Acta Arith., vol.88, pp. 333–350.
10. Luo, J. J., Ruan, H.-J. & Wang, Y.-L., 2018, “Lipschitz equivalence of Cantor sets and irreducibility of polynomials“, Mathematika, vol.64, pp. 730–741.
11. Smyth, C. J. 1985, “Some results on Newman polynomials“, Indiana Univ. Math. J., vol.34, pp. 195–200.
12.
Review
For citations:
Dubickas A. On Newman polynomials without roots on the unit circle. Chebyshevskii Sbornik. 2019;20(1):195-201. (In Russ.) https://doi.org/10.22405/2226-8383-2019-20-1-195-201