Preview

Chebyshevskii Sbornik

Advanced search

On Newman polynomials without roots on the unit circle

https://doi.org/10.22405/2226-8383-2019-20-1-195-201

Abstract

In this note we give a necessary and sufficient condition on the triplet of nonnegative integers a < b < c for which the Newman polynomial $$\sum_{j=0}^a x^j + \sum_{j=b}^c x^j$$ has a root on the unit circle. From this condition we derive that for each $$d \geq 3$$ there is a positive integer $$n>d$$ such that the Newman polynomial $$1+x+\dots+x^{d-2}+x^n$$ of length d has no roots on the unit circle.

About the Author

Arturas Dubickas
Institute of Mathematics, Vilnius University, Vilnius (Lithuania)
Russian Federation

habilitated doctor of mathematics, research professor



References

1. Boyd, D. W. 1986, “Large Newman polynomials“, in: Diophantine analysis (Kensigton, 1985), London Math. Soc. Lecture Note Ser., vol.109, Cambridge Univ. Press, Cambridge, pp. 159–170.

2. Campbell, D. M., Ferguson, H. R.P. & Forcade, R. W. 1983, “Newman polynomials on |z| = 1“, Indiana Univ. Math. J., vol.32, pp. 517–525.

3. Dubickas, A. 2004, “Nonreciprocal algebraic numbers of small measure“, Comment. Math. Univ. Carolin., vol.45, pp. 693–697.

4. Goddard, B. 1992, “Finite exponential series and Newman polynomials“, Proc. Amer. Math. Soc., vol.116, pp. 313–320.

5. Filaseta, M., Finch, C. & Nicol, C. 2006, “On three questions concerning 0, 1-polynomials“, J. Th´eorie des Nombres Bordx., vol.118, pp. 357–370.

6. Finch, C. & Jones, L. 2006, “On the irreducibility of {−1, 0, 1}-quadrinomials“, Integers, vol.6, A16, 4 pp.

7. Mercer, I. 2012, “Newman polynomials, reducibility and roots on the unit circle“, Integers, vol.12, A6, 16 pp.

8. Mercer, I. 2012, “Newman polynomials not vanishing on the unit circle“, Integers vol.12, A67, 7 pp.

9. Konyagin, S. V. 1999, “On the number of irreducible polynomials with 0, 1 coefficients“, Acta Arith., vol.88, pp. 333–350.

10. Luo, J. J., Ruan, H.-J. & Wang, Y.-L., 2018, “Lipschitz equivalence of Cantor sets and irreducibility of polynomials“, Mathematika, vol.64, pp. 730–741.

11. Smyth, C. J. 1985, “Some results on Newman polynomials“, Indiana Univ. Math. J., vol.34, pp. 195–200.

12.


Review

For citations:


Dubickas A. On Newman polynomials without roots on the unit circle. Chebyshevskii Sbornik. 2019;20(1):195-201. (In Russ.) https://doi.org/10.22405/2226-8383-2019-20-1-195-201

Views: 477


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)