Preview

Chebyshevskii Sbornik

Advanced search

On almost locally solvable Lie algebras with null Jacobson radical of a locally nilpotent radical for Lie algebras

https://doi.org/10.22405/2226-8383-2019-20-2-284-297

Abstract

In paper proves an analogue of the theorem of F. Kubo [1] for almost locally solvable Lie algebras with zero Jacobson radical. The first section aims to clarify some aspects of the homological description of the Jacobson radical. We prove a theorem generalizing E. Marshall’s theorem to the case of almost locally solvable Lie algebras, the consequence of which is an analogue of Kubo’s theorem. In the second section, we investigate some properties of a locally nilpotent radical of a Lie algebra. Primitive Lie algebras are considered. Examples are given to show that infinite-dimensional commutative Lie algebras are primitive over any fields; finitedimensional Abelian algebra, dimensions greater than 1, over an algebraically closed field is not primitive; an example of a non-Artin noncommutative Lie algebra being primitive. It is shown that for special Lie algebras over the characteristic field, the zero PI-irreducibly presented radical coincides with the locally nilpotent one. An example of a Lie algebra whose locally nilpotent radical is neither locally nilpotent nor locally solvable is given. Sufficient conditions for the primitiveness of a Lie algebra are given, examples of primitive Lie algebras and a nonprimitive Lie algebra are given.

References

1. Kubo, F. 1991, “Infinite-dimensional Lie algebras with null Jacobson radical“, Bull. Kyushu Inst. Technol. Math. Nat. Sci., v. 38. p. 23–30.

2. Burbaki, N. 1976, “Gruppy i algebry Li (glavy I–III) [Lie groups and algebras (chapters I–III)]“, Мir, Moscow, 496 pp.

3. Marshall, E. I. 1967,“The Frattini subalgebras of a Lie algebra“, J. London Math. Soc., v. 42. p. 416–422.

4. Kamiya, N. 1979, “On the Jacobson radicals of infinite-dimensional Lie algebras“,Hiroshima Math. J., v. 9. p. 37–40.

5. Latyshev, V. N. 1963, “On Lie Algebras with Identities ratios“, Sib. mat. magazine, t. 4. № 4. p. 821–829.

6. Pikhtilkov, S. A. 1981, “On special Lie algebras“, Uspehi Mat. nauk, t. 36. № 6. p. 225–226.

7. Billig Yu. V. 1988, “On the homomorphic image of a special Lie algebras“, Mat. sbornik, t. 136. № 3. p. 320–323.

8. Jacobson, N. 1964, “Lie Algebras“, Mir, Moscov.

9. Bakhturin, Yu. A. 1985, “Tozhdestva v algebrakh Li [Identities in Lie algebras]“, Nauka, Moscow, 447 pp.

10. Terekhova, Yu. A. 1994, “On the Levi theorem for special Lie algebras“, Algorithmic Problems group and semigroup theories. Interuniversity collection of scientific works, Tula: Izd-vo TGPI im. L. N. Tolstogo, p. 97–103.

11. Pikhtilkov, S. A. 2002, “On a locally nilpotent radical special Lie algebras“, Fundamental and Applied Mathematics, t. 8. v. 3. p. 769–782.

12. Towers, D. A. 2016, “Maximal subalgebras and chief factors of Lie algebras“, J. Pure Appl. Algebra 220., p. 482-–493.

13. Beidar, K. I., Pikhtilkov, S. A. 2000, “Primary radical special Lie algebras“, Fundamental and applied mathematics, t. 6. v. 3. p. 643–648.

14. Herstein, I., 1972, “Nekommutativnye kol’ca [Noncommutative rings] “, Mir, Moscow. 191 pp.

15. Dixmier, J. 1978, “Universal’nyye obertyvayushchiye algebry [Universal enveloping algebras]“, Mir, Moscow.

16. Pikhtilkov, S. A. 1974, “Primitive free associative algebra with a finite number of generators“, УМН, № 1. p. 183–184.


Review

For citations:


Pikhtilkova O.A., Мещерина Е.В., Горелик А.А. On almost locally solvable Lie algebras with null Jacobson radical of a locally nilpotent radical for Lie algebras. Chebyshevskii Sbornik. 2019;20(2):284-297. (In Russ.) https://doi.org/10.22405/2226-8383-2019-20-2-284-297

Views: 464


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)