Нет строго регулярного графа локально Хивуд
Список литературы
1. D. Brandfonbrener. Algebraic graph theory, strongly regular graphs, and Conway’s 99 problem, 2017. https://davidbrandfonbrener.github.io/Files/senior_paper.pdf.
2. A. E. Brouwer. Strongly regular graphs, 2013. http://www.win.tue.nl/~aeb/graphs/srg/srgtab.html.
3. A. E. Brouwer, A. M. Cohen, and A. Neumaier. Distance-regular graphs, volume 18 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1989. DOI:10.1007/978-3-642-74341-2.
4. A. E. Brouwer and W. H. Haemers. The Gewirtz graph: An exercise in the theory of graph spectra. European J. Combin., 14:397–407, 1993. DOI:10.1006/eujc.1993.1044.
5. J. H. Conway. Five $1,000 problems (Update 2017), 2017. https://oeis.org/A248380/a248380.pdf.
6. G. Royle. Cubic graphs, 1996. http://staffhome.ecm.uwa.edu.au/~00013890/remote/cubics/index.html.
Для цитирования:
Juriˇsi´c A., Vidali J. Нет строго регулярного графа локально Хивуд. Чебышевский сборник. 2019;20(2):198-206. https://doi.org/10.22405/2226-8383-2019-20-2-198-206
For citation:
Juriˇsi A., Vidali J. No strongly regular graph is locally Heawood. Chebyshevskii Sbornik. 2019;20(2):198-206. https://doi.org/10.22405/2226-8383-2019-20-2-198-206