Preview

Chebyshevskii Sbornik

Advanced search

Cones and polytopes of geleralized metrics

https://doi.org/10.22405/2226-8383-2019-20-2-140-155

About the Author

Elena Ivanovna Deza

Russian Federation


References

1. Deza, M. M., Deza, E. I., Dutour Sikirić, М. 2015, “Polyhedral structures associated with quasimetrics”, Chebyshevskii sbornik, Vol. 16 (2), P. 79–92.

2. Kudryashov, B. D. 2009, “Information Theory”, StPb.: Petir.

3. Lidovskii, V. V. 2004, “Information Theory”, M.: Sputnik.

4. Shannon, C. E. 1948, “A Mathematical Theory of Communication”, M.: IL.

5. Charikar, M., Makarychev, K., Makarychev, V. 2006, “Directed metrics and directed graph partitioning problem”, Proc. of 11-th ACM-SIAM Symp. on Discrete Algorithms, P. 51–60.

6. Chebotarev, P. 2013, “Studying new classes of graph metrics”, Proceedings of the SEE Conference “Geometric Science of Information” (GSI-2013), Lecture Notes in Computer Science, LNCS 8085, P. 207–214.

7. Chebotarev, P., Agaev, R. 2002, “Forest matrices around the Laplacian matrix”, Linear Algebra and its Applications, No 356, P. 253–274.

8. Chebotarev, P., Deza, E. 2018, “Hitting time quasi-metric and its forest representation”, Optimization Letters, URL: https://link.springer.com/article/10.1007%2Fs11590-018-1314-2.

9. Chebotarev, P., Shamis, Е. 2006, “The forest metric for graph verticies”, arXiv:060257v1.

10. Chebotarev, P., Shamis, E. 2006, “Matrix forest theorems”, arXiv:0602575v1.

11. Chebotarev, P., Shamis, E. 1998, “On proximity measures for graph vertices”, Automation and Remote Control, No 59, P. 1443–1459.

12. Chebotarev, P., Shamis, E. 1997, “The matrix-forest theorem and measuring relations in small social groups”, Automation and Remote Control, No 58, P. 1505–1514.

13. Deza, M. M., Deza, E. I. 2016, “Encyclopedia of Distances”, 4-rd edition, Springer-Verlag, Berlin.

14. Deza, M. M., Deza, E. I. 2011, “Cones of partial metrics”, Contrib. Discrete Math., No 6(1), P. 26–47.

15. Deza, M. M., Deza, E. I., Vidali, J. 2010, “Cones of weighted and partial metrics”, Proceedings of the International Conference on Algebra, P. 177–197.

16. Deza, M. M., Dutour, M., Deza, E. I. 2016, “Generalizations of finite metrics and cuts”, World Scientific.

17. Deza, M. M., Dutour, M., Panteleeva, E. I. 2002, “Small cones of oriented semi-metrics”, Forum for Interdisciplinary Mathematics Proceedings on Statistics, Combinatorics and Related Areas, Vol. 22, P. 199–225.

18. Deza, M. M., Grishukhin, V. P., Deza, E. I. 2012, “Cones of weighted quasi-metrics, weighted quasi-hypermetrics and of oriented cuts”, Mathematics of Distances and Applications, ITEA, Sofia, P. 31–53.

19. Deza, M. M., Laurent, M. 1997, “Geometry of cuts and metrics”, Springer-Verlag, Berlin.

20. Deza, M. M., Panteleeva, E. I. 2000, “Quasi-semi-metrics, oriented multi-cuts and related polyhedral”, European Journal of Combinatorics, No 21(6), P. 777–795.

21. Deza, M. M., Rosenberg, I. G. 2000, “n-semimetrics”, European Journal of Combinatorics, Special Issue Discrete Metric Spaces, No 21(6), P. 797–806.

22. Doyle, P. G., Snell, J. L. 1984, “Random Walks and Electric Networks”, Mathematical Association of America, Washington D.C..

23. Fréchet, M. 1906, “Sur quelques points du calcul fonctionnel”, Rend. Circolo mat. Palermo, Vol. 22, P. 1–74.

24. Gvishiani, A. D., Gurvich, V. A. 1987, “Metric and ultrametric spaces of resistances”, Russian Mathematical Surveys, No 42, P. 235–236.

25. Hausdorff, F. 1914, “Grundzüge der Mengenlehre”, Leipzig.

26. Klein, D. J., Randic, M. 1993, “Resistance distance”, Journal of Mathematical Chemistry, No 12, P. 81–95.

27. Seda, A. K. 1997, “Quasi-metrics and the semantic of logic programs”, Fundamenta Informaticaem, Vol. 29, P. 97–117.

28. Sharpe, G. E. 1967, “Solution of the (m + 1)-terminal resistive network problem by means of metric geometry”, Proceedings of the First Asilomar Conference on Circuits and Systems, Pacific Grove, CA, P. 319–328.

29. Wilson, W. A. 1931, “On quasi-metric spaces”, American J. of Math., Vol. 53, P. 575–681.


Review

For citations:


Deza E.I. Cones and polytopes of geleralized metrics. Chebyshevskii Sbornik. 2019;20(2):140-155. (In Russ.) https://doi.org/10.22405/2226-8383-2019-20-2-140-155

Views: 471


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)