Preview

Чебышевский сборник

Расширенный поиск

Конусы и многогранники обобщенных метрик

https://doi.org/10.22405/2226-8383-2019-20-2-140-155

Об авторе

Елена Ивановна Деза

Россия


Список литературы

1. Деза М. М., Деза Е. И., Дютур Сикирич М. Полиэдральные конструкции, связанные с квазиметриками // Чебышевский сборник. 2015. Т. 16, выпуск 2. С. 79–92.

2. Кудряшов Б. Д. Теория информации: Учебник для вузов. – СПб.: Петир, 2009.

3. Лидовский В. В. Теория информации: Учебное пособие. – М.: Компания Спутник, 2004.

4. Шеннон К. Математическая теория связи. – М.: ИЛ, 1963.

5. Charikar M., Makarychev K., Makarychev V. Directed metrics and directed graph partitioning problem // Proc. of 11-th ACM-SIAM Symp. on Discrete Algorithms. 2006. P. 51–60.

6. Chebotarev P. Studying new classes of graph metrics // Proceedings of the SEE Conference “Geometric Science of Information” (GSI-2013), Lecture Notes in Computer Science, LNCS 8085. 2013. P. 207–214.

7. Chebotarev P., Agaev R. Forest matrices around the Laplacian matrix // Linear Algebra and its Applications. 2002. No 356. P. 253–274.

8. Chebotarev P., Deza E. Hitting time quasi-metric and its forest representation // Optimization Letters. 2018. URL: https://link.springer.com/article/10.1007%2Fs11590-018-1314-2.

9. Chebotarev P., Shamis Е. The forest metric for graph verticies // arXiv:060257v1. 2006.

10. Chebotarev P., Shamis E. Matrix forest theorems // arXiv:0602575v1. 2006.

11. Chebotarev P., Shamis E. On proximity measures for graph vertices // Automation and Remote Control. 1998. No 59. P. 1443–1459.

12. Chebotarev P., Shamis E. The matrix-forest theorem and measuring relations in small social groups // Automation and Remote Control. 1997. No 58. P. 1505–1514.

13. Deza M. M., Deza E. I. Encyclopedia of Distances, 4-rd edition. – Springer-Verlag, Berlin, 2016.

14. Deza M.M., Deza E.I. Cones of partial metrics // Contrib. Discrete Math. 2011. No 6(1). P. 26–47.

15. Deza M. M., Deza E. I., Vidali J. Cones of weighted and partial metrics // Proceedings of the International Conference on Algebra. 2010. P. 177–197.

16. Deza M. M., Dutour M., Deza E. I. Generalizations of finite metrics and cuts. –World Scientific, 2016.

17. Deza M. M., Dutour M., Panteleeva E. I. Small cones of oriented semi-metrics // Forum for Interdisciplinary Mathematics Proceedings on Statistics, Combinatorics and Related Areas. 2002. Vol. 22. P. 199–225.

18. Deza M. M., Grishukhin V. P., Deza E. I. Cones of weighted quasi-metrics, weighted quasihypermetrics and of oriented cuts // Mathematics of Distances and Applications, ITEA, Sofia. 2012. P. 31–53.

19. Deza M. M., Laurent M. Geometry of cuts and metrics. - Springer-Verlag, Berlin, 1997.

20. Deza M. M., Panteleeva E. I. Quasi-semi-metrics, oriented multi-cuts and related polyhedra // European Journal of Combinatorics. 2000. No 21(6). P. 777–795.

21. Deza M. M., Rosenberg I. G. n-semimetrics // European Journal of Combinatorics, Special Issue Discrete Metric Spaces. 2000. No 21(6). P. 797–806.

22. Doyle P. G., Snell J. L. Random Walks and Electric Networks. - Mathematical Association of America, Washington D.C., 1984.

23. Fréchet M. Sur quelques points du calcul fonctionnel // Rend. Circolo mat. Palermo. 1906. Vol. 22. P. 1–74.

24. Gvishiani A. D., Gurvich V. A. Metric and ultrametric spaces of resistances // Russian Mathematical Surveys. 1987. No 42. P. 235–236.

25. Hausdorff F. Grundzüge der Mengenlehre. – Leipzig, 1914.

26. Klein D. J., Randic M. Resistance distance // Journal of Mathematical Chemistry. 1993. No 12. P. 81–95.

27. Seda A.K. Quasi-metrics and the semantic of logic programs // Fundamenta Informaticaem. 1997. Vol. 29. P. 97–117.

28. Sharpe G. E. Solution of the (m + 1)-terminal resistive network problem by means of metric geometry // Proceedings of the First Asilomar Conference on Circuits and Systems, Pacific Grove, CA. 1967. P. 319–328.

29. Wilson W.A. On quasi-metric spaces // American J. of Math. 1931. Vol. 53. P. 575–681.


Рецензия

Для цитирования:


Деза Е.И. Конусы и многогранники обобщенных метрик. Чебышевский сборник. 2019;20(2):140-155. https://doi.org/10.22405/2226-8383-2019-20-2-140-155

For citation:


Deza E.I. Cones and polytopes of geleralized metrics. Chebyshevskii Sbornik. 2019;20(2):140-155. (In Russ.) https://doi.org/10.22405/2226-8383-2019-20-2-140-155

Просмотров: 472


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)