Preview

Chebyshevskii Sbornik

Advanced search

DITRIBUTION OF SPECIAL ALGEBRAIC POINTS IN DOMAINS OF SMALL MEASURE

https://doi.org/10.22405/2226-8383-2016-17-1-52-70

Abstract

Problems related to the distribution of algebraic numbers and points with algebraically conjugate coordinates are a natural generalization of problems connected with estimating of number of integer and rational points in figures and bodies of a Euclidean space. In this paper we consider a problem related to the distribution of special algebraic points α = (α1, α2) with algebraically conjugate coordinates α1 and α2 such that their height and degree are bounded and the absolute values of P′(α1) and P′(α1) where P(t) is a minimal polynomial of α1 and α2 are small. The sphere of application of this points is problems related to Mahler’s classification of numbers [1] proposed in 1932 and Kosma’s classification of numbers [2] proposed some years later. One of this is a question: do Mahler’s T-numbers exist? This question has remained unanswered for nearly 40 years and only in 1970 W. Schmidt [3] showed that the class of T-numbers is not empty and proposed the construction of this numbers. Another problem is a question about difference between Mahler’s and Koksma’s classifications. In 2003 Y. Bugeaud published a paper [4] where he proved that there are exist a numbers with different Mahler’s and Koksma’s characteristics. Special algebraic points α = (α1, α2) considered in this paper are used to prove this results. We consider special algebraic points α = (α1, α2) such that the height of algebraically conjugate numbers α1 and α2 is bounded by Q, their degree is bounded by n and |P′(α1)| ≤ ≤ Q1−v1 , |P′(α2)| ≤ Q1−v2 for 0 < v1, v2 < 1 where P(t) is a minimal polynomial of this numbers. In this paper we obtained the lower and upper bound for the quantity of special algebraic numbers in rectangles with the size of Q−1+v1+v2 .

About the Author

A. G. Gusakova
Институт математики НАН Беларуси
Russian Federation
PhD student, Institute of Mathematics, Belorussian Academy of Sciences


References

1. Beresnevich V., Bernik V. & G¨otze F. 2010, „The distribution of close conjugate algebraic numbers“, Compos. Math., vol. 146, no. 5, pp. 1165–1179.

2. Bernik V. I. 1983, „Bernik V.I. 1983, „Application of the Hausdorff dimension in the theory of Diophantine approximations“, Acta Arith., vol. 42, no. 3, pp. 219–253.“, Acta Arith., vol. 42, no. 3, pp. 219–253 (Russian).

3. Bernik V. I. 1989, „The exact order of approximating zero by values of integral polynomials“,Acta Arith., vol. 53, no. 1, pp. 17–28 (Russian).

4. Bernik V. I. & Dombrovskii I.R. 1994, „Effective estimates for the measure of sets defined by Diophantine conditions“, Trudy Mat. Inst. Steklov., vol. 207, pp. 35–41 (Russian); translation in Proc. Steklov Inst. Math. 1995, vol. 207, no. 6, pp. 35–40.

5. Bernik V., G¨otze F. & Kukso O. 2014,“On algebraic points in the plane near smooth curves“, Lithuanian Math. Journal, vol. 54, no. 3, pp. 231–251.

6. Bernik V. & G¨otze F. 2015, „Distribution of real algebraic numbers of arbitrary degree in short intervals“, Izv. Ross. Akad. Nauk Ser. Mat., vol. 79, no 1, pp. 21–42 (Russian); translation in Izv. Math., 2015, vol. 79, no. 1, pp. 18–39.

7. Budarina N. V. & G¨otze F. 2013,“Distance between conjugate algebraic numbers in clusters“, Translation of Mat. Zametki, vol. 94, no. 5-6, pp. 816– 819.

8. Bugeaud Y. 2002,“Approximation by algebraic integers and Hausdorff dimension“, J. London Math. Soc, vol. 65, no. 2, pp. 547–559.

9. Bugeaud Y. 2003, „Mahler’s classification of numbers compared with Kosma’s“, Acta Arith., vol. 110, no. 1, pp. 89–105.

10. Bugeaud Y. 2004, „Approximation by algebraic numbers“, Cambridge Tracts in Mathematics, vol. 160. Cambridge University Press. Cambridge. 274 p.

11. Bugeaud Y. & Mignotte M. 2004, „On the distance between roots of integer polynomials“, Proc. Edinb. Math. Soc., vol. 47, no. 3, pp. 553–556.

12. Bugeaud Y. & Mignotte M. 2010, „Polynomials root separation“, Int. J. Number Theory, vol. 6, no. 3, pp. 587–602.

13. Davenport H. 1951, „On a principle of Lipschitz“, J. London Math. Soc., vol. 26, pp. 179–183.

14. Everst J.-H. 2004, „Distance between the conjugates if an algebraic number“, Publ. Math. Debrecen, vol. 65, no. 3-4, pp. 323–340.

15. Gusakova A. G. & Bernik V. I. 2014, „The quantity of algebraic numbers with small derivative of the minimal polynomial in a short intervals“, Trudy Inst. Matematiki, vol. 22, no. 2, pp. 18–31.

16. Huxley M. N. 1996, „Area, lattice points, and exponential sums“, London Mathematical Society Monographs, New Series, vol. 13, Oxford University Press, New York.

17. Koksma J. F. 1939, „ ¨Uber die Mahlersche Klasseneinteilung der transzendenten Zahlen und die Approximation komplexer Zahlen durch algebraische Zahlen“, Mh. Math. Physik., vol. 48, pp. 176–189.

18. Mahler K. 1932, „Zur Approximation der Exponentialfunktion und des Logarithmus. Teil I, II“, J. reine und angew. Math., vol. 166, pp. 118–136, 137–150.

19. Mahler K. 1964, „An inequality for the discriminant of a polynomial“, Michigan Math. J., vol. 11, pp. 257–262.

20. Schmidt W. 1970, „T-numbers do exist“, Symposia Mathematica, IV (INDAM, Rome, 1968/ 1969), pp. 3–26.

21. Schmidt W. M. 1980, „Diophantine approximation“, Lecture Notes in Math., 785, Springer, Berlin, x+299 p.

22. Sprindzhuk V. G. 1967, „Problema Malera v metricheskoy toerii chisel“ (Russian) [Mahlers’s problem in metric number theory], Minsk: Nauka i tehnika, 184 pp.


Review

For citations:


Gusakova A.G. DITRIBUTION OF SPECIAL ALGEBRAIC POINTS IN DOMAINS OF SMALL MEASURE. Chebyshevskii Sbornik. 2016;17(1):52-70. (In Russ.) https://doi.org/10.22405/2226-8383-2016-17-1-52-70

Views: 528


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)