Preview

Chebyshevskii Sbornik

Advanced search

The Gromov – Hausdorff distances to simplexes

https://doi.org/10.22405/2226-8383-2019-20-2-108-122

Abstract

In the paper geometrical characteristics of metric spaces appearing in explicit formulas for
the Gromov–Hausdorff distance from this spaces to so-called simplexes, i.e., the metric spaces,
all whose non-zero distances are the same. For the calculation of those distances the geometry
of partitions of these spaces is important. In the case of finite metric spaces that leads to
some analogues of the edges lengths of minimal spanning trees. Earlier, a similar theory was
elaborated for compact metric spaces. These results are generalised to the case of an arbitrary
bounded metric space, explicit formulas are obtained, and some proofs are simplified.

About the Authors

D. S. Grigor’ev

Russian Federation


Alexander Olegovich Ivanov

Russian Federation


Alexey Augustinovich Tuzhilin

Russian Federation


References

1. Hausdorff, F. 1914, Grundzüge der Mengenlehre, Veit, Leipzig [reprinted by Chelsea in 1949].

2. Tuzhilin, A. A. 2017, “Who Invented the Gromov-Hausdorff Distance?”, ArXiv e-prints, arXiv:1612.00728.

3. Edwards, D. 1975, “The Structure of Superspace”, In: Studies in Topology, ed. by Stavrakas, N. M. and Allen, K. R., Academic Press, Inc. New York, London, San Francisco.

4. Gromov, M. 1981, “Groups of Polynomial growth and Expanding Maps”, In: Publications Mathematiques, I.H.E.S., Paris, Vol. 53.

5. Burago, D.Yu., Burago, Yu. D. & Ivanov, S. V., 2001, A Course in Metric Geometry, American Mathematical Society, Providence, RI.

6. Ivanov, A. O. & Tuzhilin, A. A., 2017, Geometry of Hausdorff and Gromov–Hausdorff distances, the case of compact spaces, Izd-vo Popech. Soveta Mech.-Mat. Facult. MGU, Moscow [in Russian].

7. Ivanov, A. O., Nikolaeva, N. K. & Tuzhilin, A. A. 2016, “The Gromov–Hausdorff Metric on the Space of Compact Metric Spaces is Strictly Intrinsic”, Mathematical Notes, vol. 100, no. 6, pp. 171–173.

8. Ivanov, A. O. & Tuzhilin, A.A. 2019, “Isometry group of Gromov–Hausdorff space”, Matematicki Vesnik, vol. 71, no. 1–2, pp. 123–154.

9. Memoli, F. 2007, “On the Use of Gromov–Hausdorff Distances for Shape Comparison”, In: Proceedings of Point Based Graphics 2007, Ed. by Botsch M., Pajarola R., Chen B., and Zwicker M., The Eurographics Association, Prague, 2007, pp. 81–90.

10. Tuzhilin, A. A. 2016, “Calculation of Minimum Spanning Tree Edges Lengths using Gromov–Hausdorff Distance”, ArXiv e-prints, arXiv:1605.01566.

11. Iliadis, S. D., Ivanov, A. O. & Tuzhilin, A. A. 2016, “Geometry of Compact Metric Space in Terms of Gromov-Hausdorff Distances to Regular Simplexes”, ArXiv e-prints, arXiv:1607.06655.

12. Iliadis, S. D., Ivanov, A. O. & Tuzhilin A. A. 2016, “Realizations of Gromov-Hausdorff Distance”, ArXiv e-prints, arXiv:1603.08850.

13. Ivanov, A. O., Tuzhilin, A. A. 2016, “Gromov–Hausdorff Distance, Irreducible Correspondences, Steiner Problem, and Minimal Fillings”, ArXiv e-prints, arXiv: 1604.06116.

14. Ivanov, A. O., Tuzhilin, A. A. 2019, “Hausdorff realization of linear geodesics of Gromov–Hausdorff space”, ArXiv e-prints, arXiv: 1904.09281.

15. Ivanov, A., Tuzhilin, A. 2017, “Geometry of Gromov–Hausdorff metric space”, Bulletin de l’Academie Internationale CONCORDE, no. 3, pp. 47–57.


Review

For citations:


Grigor’ev D.S., Ivanov A.O., Tuzhilin A.A. The Gromov – Hausdorff distances to simplexes. Chebyshevskii Sbornik. 2019;20(2):108-122. (In Russ.) https://doi.org/10.22405/2226-8383-2019-20-2-108-122

Views: 484


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)