Preview

Chebyshevskii Sbornik

Advanced search

p-adic L-functions and p-adic multiple zeta values

https://doi.org/10.22405/2226-8383-2019-20-1-112-130

Abstract

The article is dedicated to the memory of George Voronoi. It  is concerned with (p-adic) L-functions (in partially  (p-adic) zeta functions)  and cyclotomic  (p-adic) (multiple) zeta values. The beginning of the article contains a short  summary of the results on the Bernoulli numbers associated with the studies of George Voronoi. Results on multiple zeta values have presented by D. Zagier, by P. Deligne and A.Goncharov, by A. Goncharov, by F. Brown, by C. Glanois and others. S. "Unver have investigated p-adic multiple zeta values in the depth two. Tannakian interpretation of p-adic multiple zeta values is given by H.  Furusho. Short history and connections among Galois groups, fundamental groups, motives and arithmetic functions are presented in the talk by Y. Ihara. Results  on multiple zeta values, Galois groups and geometry of modular varieties has presented by Goncharov.Interesting unipotent motivic fundamental group is defined and investigated by Deligne and Goncharov. The framework of (p-adic) L-functions and (p-adic) (multiple) zeta values is based on Kubota-Leopoldt p-adic L-functions and arithmetic p-adic L-functions by Iwasawa. Motives and  (p-adic) (multiple) zeta values by Glanois and by "Unver, improper intersections of Kudla-Rapoport divisors and Eisenstein series by Sankaran are reviewed. More fully the content of the article can be found at the following table of contents: Introduction. 1. Voronoi-type congruences for  Bernoulli numbers. 2. Riemann zeta values. 3. On class groups of rings with divisor theory.  Imaginary quadratic and cyclotomic fields. 4. Eisenstein Series. 5. Class group, class fields and zeta functions. 6. Multiple zeta values. 7. Elements of non-Archimedean local fields and $ p-$adic analysis. 8. Iterated integrals and (multiple) zeta values. 9. Formal groups and p-divisible groups. 10. Motives and (p-adic) (multiple) zeta values. 11. On the Eisenstein series associated with Shimura varieties. Sections 1-9 and subsection 11.1 (On some Shimura varieties and Siegel modular forms) can be considered as an elementary introduction to the results of section 10 and subsection 11.2 (On improper intersections of Kudla-Rapoport divisors and Eisenstein series). Numerical examples are included.

About the Author

Nikolay Mihaylovich Glazunov

Ukraine


References

1. Zagier, D. 1993, ``Periods of modular forms, traces of Hecke operators, and multiple $\zeta-$values'', \emph{Research into Automorphic Forms and $L-$functions}, Kyoto, Surikaisekikenkyusho Kokyuroku, 843, pp. 162-170.

2. Manin, Yu. I. 1971, ``Cyclotomic fields and modular curves'', UMN, 26:6, pp. 7-78.

3. Manin, Yu. I. 1972, ``Parabolic points and zeta-functions of modular curves'', Math. USSR-Izv., 6:1 , pp. 19-64.

4. Deligne, P. 1989, ``Le groupe fondamental de la droite projective moins trois points'', in: Ihara et al., (Eds.), Galois Groups over $\mathbb Q$, Springer Verlag, New York, pp. 79-297.

5. Deligne, P., Goncharov, A. 2005. ``Groupes fondamentaux motiviques de Tate mixte'', Ann. Sci. Ecole Norm. Sup., (4), vol. 38, no. 1, pp. 1-56.

6. Goncharov, A. 2000, ``Multiple $\zeta$-values, Galois groups, and geometry of modular varieties'', European Congr. of Mathematics, I, Barcelona, Progr. Math., 201, Birkhauser, pp. 361-392.

7. Brown, F. 2012, Mixed Tate motives over Z'', Ann. of Math., vol. 175, no. 1, pp. 949-976.

8. Glanois, C. 2016, ``Motivic unipotent fundamental groupoid of $\mathbb{G}_m \backslash \mu_N$ for $N = 2, 3, 4, 6, 8$ and Galois descents'', Journal of Number Theory, 160, pp. 334-384.

9. Unver, S. 2004,``$p$-adic multiple zeta values'', Journal of Number Theory, 108, pp. 111-156.

10. Furusho, H. 2007, ``$p$-adic multiple zeta values II. Tannakian interpretations'', Am. J. Math., 129 (4), pp.1105-1144.

11. Unver, S. 2016, ``Cyclotomic $p$-adic multi-zeta values in depth two'', Manuscr. Math., 149, no. 3-4, pp.405-441.

12. Ihara, Y. 1991, ``Braids, Galois Groups, and Some Arithmetic Functions'', Proc. of the ICM 90 (I), Springer-Verlag, Tokyo Berlin Heidelberg New York,1991, pp. 99-120.

13. Kubota, K. Leopoldt, H.-W. 1964, ``Einep-adische Theorieder Zetawerte''. I, J. Reine Angew. Math., 214/215, pp. 328-339.

14. Iwasawa, K. 2001. ``Analogies between number fields and function fields''. In \emph{Collected Papers}, \textbf{ II}, Springer-Verlag, Tokyo, pp. 606-611.

15. Weber, H. 1908, Lehrbuch der Algebra, vol. III, F. Vieweg und Sohn, Braunschweig.

16. Hasse, H. 1931, ``Zum Hauptidealsatz der komplexen Multiplikation'', Monatshefte fur Math., 38, 315-322, 323-330, 331-344.

17. Deuring, M. 1961, ``Klassenkorper der komplexen Multiplikation'', Enzyklopadie der Math. Wiss., Bd. 12, Heft 10, Teil II, 23.

18. Borevich, Z., Shafarevich, I. 1986, Number Theory, Pure and Applied mathematics, Academic Press, New York.

19. Voronoi, G.F. 1952, Collected Works, vol. I, AN UkrSSR, Kiev.

20. Hashimoto, M. 2017, Equivariant class group. II: Enriched descent theorem. Commun. Algebra, 45(4), pp. 1509-1532,

21. Koblitz, N. 1997, $p$-adic numbers, $p$-adic analysis and zeta-functions, Bibphysmat, Igevsk.

22. Parshin, A. 1966, ``A generalization of Jacobian variety '', Izv. Akad. Nauk SSSR Ser Mat., 30, pp. 175-182.

23. Chen, K. 1977, ``Iterated path integrals'', Bull. Amer. Math. Soc. 83, pp. 831-879.

24. Edited by J. Cassels and A. Frohlich, 2003, Algebraic Number Theory, Academic Press, London.

25. Hazewinkel M. 1977, Formal Groups, Academic Press, NY.

26. Vvedenskii O.N. 1973, `` On local "class fields" of elliptic curves'', Izv. Akad. Nauk SSSR Math., USSR Izvestija Ser. Mat., vol. 37, no. 1, pp. 20-88.

27. Vvedenskii O.N. On "universal norms" of formal groups over integer ring of local fields (In Russian), Izv. Akad. Nauk SSSR Math., USSR Izvestija Ser Mat.}, vol. 37, 1973, 737-751.

28. Drinfeld, V. 1991, ``On quasi-triangular quasi-Hopf algebras and one group that is closely related to $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$'', Leningrad Math. J., 2:4 , pp. 829-860.

29. Goncharov, A. 2005, ``Galois symmetries of fundamental groupoids and noncommutative geometry'', Duke Math. J., 128, no. 2 , pp. 209 - 284.

30. Deligne, P. 2010, ``Le groupe fondamental unipotent motivique de $G_m\setminus \mu_N$ pour $N = 2,3,4,6$ or $8$'', Publ. Math. IHES, vol. 112, no. 1, pp. 101 - 141.

31. Kudla, K. 2004, ``Special cycles and derivatives of Eisenstein series'', Math. Sci. Research Institute Publ., Cambridge Univ. Press, vol. 49. pp. 243-270.

32. Kudla, K., Rapoport, M. 2014, ``Special cycles on unitary Shimura varieties II: global theory'', J. Reine Angew. Math., 697, pp. 91-157.

33. Kudla, K. ``Derivatives of Eisenstein Series and Arithmetic Geometry'', Proc. of ICM 2002, vol. II, Higher Education Press, Beijing, 2004, pp. 173-183.

34. Kudla, K., Rapoport, M. 2011 ``Special cycles on unitary Shimura varieties I. Unramified local theory'', Invent. math., 184, pp. 629-682.

35. Harashita, S. ``Geometry and analysis of automorphic forms of several variables'', Proc. Int. Symp. in honor of Takayuki Oda on the occasion of his 60th birthday, Univ. of Tokyo, Tokyo, Japan, September 14-17, 2009. Hackensack, NJ: World Scientific. Series on Number Theory and its Applications 7, pp. 41-55.

36. Hironaka, Y. 1998, ``Local Zeta functions on Hermitian forms and its application to local densities'', Number Theory, 71, pp. 40-64.

37. Sankaran, S. 2017, ``Improper intersections of Kudla-Rapoport divisors and Eisenstein serie'', J. Inst. Math. Jussieu, 16, no. 5. pp. 899 - 945.

38. Sankaran, S. 2013, ``Unitary cycles on Shimura curves and the Shimura lift I'', Documenta Math., 18, pp. 1403-1464.

39. Glazunov, N.M. 1973, ``Algorithms and programs for research in Diophantine geometry'', Preprint 73-16, Institute of Cybernetics of the Ukrainian Academy of Sciences, Kiev, 26 p.

40. Glazunov, N. ``Class groups of rings with divisor theory, $ L $-functions and moduli spaces'', Int. conf. `Algebraic and geometric methods of analysis. Book of abstracts. Institute of Mathematics, Odessa-Kiev, 2018, pp.19-20. Available at: https://www.imath.kiev.ua/~topology/conf/agma2018

41. Glazunov, N. ``Class Fields, Riemann Surfaces and (Multiple) Zeta Values'', Proc. 3-d Int.l Conf. Computer Algebra & Information Technologies, Mechnikov National University, Odessa, 2018, pp.152-154.

42. Glazunov, N. 2015, ``Quadratic forms, algebraic groups and number theory'', Chebyshevskii Sbornik, vol.16, no. 4, pp.77-89.

43. Glazunov, N. 2015, `` Extremal forms and rigidity in arithmetic geometry and in dynamics'', Chebyshevskii Sbornik, vol.16, no. 3, pp.124-146.


Review

For citations:


Glazunov N.M. p-adic L-functions and p-adic multiple zeta values. Chebyshevskii Sbornik. 2019;20(1):112-130. (In Russ.) https://doi.org/10.22405/2226-8383-2019-20-1-112-130

Views: 562


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)