ARITHMETIC PROPERTIES OF POLYADIC INTEGERS
https://doi.org/10.22405/2226-8383-2015-16-1-254-264
Abstract
Arithmetic properties of series of the form ∑∞ n=0 an · n! with an ∈ Z are studied. The concept of infinite algebraic independence polyadic numbers. A theorem on the algebraic independence polyadic infinite number of class F (Q, C1, C2, C3, d0), if they are connected by a system of linear differential equations of a certain kind.
About the Author
V. G. ChirskiiRussian Federation
References
1. Postnikov, A. G. 1971, "Introduction to analytic number theory" , Nauka, Мoscow, 416p.
2. Pontryagin, L. S. 1984, "Nepreryvnye gruppy." [Continuous groups] Fourth edition. ‘Nauka, Moscow, 520 pp. (Russian)
3. Kurepa, D. 1971, "On the left factorial function !n" , Math. Balkan., vol. 1, pp. 147–153. 4. Чирский В. Г., Матвеев В. Ю. О представлениях натуральных чисел. Чебышевский сборник, том 14, выпуск № 1, 2013.- 75-86.
4. Чирский В.Г. Арифметические свойства некоторых полиадических рядов. Вестник МГУ, сер.1, матем„механ, 2012, №5, 52-54.
5. Чирский В.Г. Арифметические свойства полиадических рядов с периодическими коэффициентами.Доклады Академии наук, математика,2014,том 439, № 6, с.677-679.
6. V.G. Chirskii, On the series which are algebraically independent in all local fields, Vestnik Moskov. Univer, Ser 1, (rus.) 3(1994), 93-95.
7. Шидловский А.Б. Трансцендентные числа.-М.: "Наука".-1987.-417с.
8. D. Bertrand, V. Chirskii, Y.Yebbou. Effective estimates for global relations on Euler-type series //Ann.Fac.Sci.Toulouse.-V.XIII. - № 2.-2004.-p. 241-260.
9.
Review
For citations:
Chirskii V.G. ARITHMETIC PROPERTIES OF POLYADIC INTEGERS. Chebyshevskii Sbornik. 2015;16(1):254-264. (In Russ.) https://doi.org/10.22405/2226-8383-2015-16-1-254-264