On monoids of natural numbers with unique factorization into prime elements
https://doi.org/10.22405/2226-8383-2018-19-1-79-105
Abstract
The paper continues research on a new class of Dirichlet series — zeta functions of monoids of natural numbers. The inverse Dirichlet series for zeta functions of monoids of natural numbers with unique factorization into prime elements and for zeta-functions of sets of prime elements of monoids with unique factorization into prime elements are studied.
For any β > 1 examples of Dirichlet series with an abscissa of absolute convergence σ = are constructed. For any natural β > 1 examples of a pair of zeta functions ζ(B|α) and ζ(AB,β|α) with the equality σAB,β = σB/ β are constructed.
Various examples of monoids and corresponding zeta functions of monoids are considered. A number of properties of the zeta functions of monoids of natural numbers with unique factorization into prime factors are obtained. An explicit form of the inverse series to the zeta-function of the set of primes supplemented by one is found.
An explicit form of the ratio of the Riemann zeta-function to the zeta-function of the set of primes supplemented by one is found.
Nested sequences of monoids generated by primes are considered. For the zeta-functions of these monoids the nesting principle is formulated, which allows to transfer the results about the coefficients of one zeta-functions to the coefficients of other zeta-functions.
In this paper the general form of all monoids of natural numbers with unique factorization into prime factors was described for the first time.
In conclusion, topical problems for zeta-functions of monoids of natural numbers that require further study are considered.
About the Author
N. N. DobrovolskyRussian Federation
Dobrovolsky Nikolai Nikolaevich — candidate of physical and mathematical sciences, assistant of the department of applied mathematics and computer science
References
1. Ajgner M., 1982, Kombinatornaja teorija, Izd-vo Mir, Moskva, 558 p.
2. Bombieria E., Ghoshb A., 2011, “Around the Davenport–Heilbronn function”, Uspekhi Mat. Nauk, 66:2(398) pp. 15–66.
3. Voronin S. M., 2006, Izbrannye trudy: Matematika. Pod red. A. A. Karacuby, Izd-vo MGTU im. N. Je. Baumana, Moskva, 480 p.
4. Voronin S. M., Karacuba A. A., 1994, Dzeta-funkcija Rimana, Izd-vo Fiz-matlit, Moskva, 376 p.
5. Dobrovol’skaja L. P., Dobrovol’skij M. N., Dobrovol’skij N. M., Dobrovol’skij N. N., 2012, "Giperbolicheskie dzeta-funkcii setok i reshjotok i vychislenie optimal’nyh kojefficientov" Chebyshevskii Sbornik vol 13, №4(44) pp. 4–107.
6. Dobrovol’skij M. N., 2007, "Funkcional’noe uravnenie dlja giperbolicheskoj dzeta-funkcii celochislennyh reshetok", Doklady akademii nauk, vol 412, № 3, pp. 302–304.
7. Dobrovolsky N. M., Dobrovolsky N. N., Soboleva V. N., Sobolev D. K., Dobrovol’skaya L. P., Bocharova O. E., 2016, "On hyperbolic Hurwitz zeta function", Chebyshevskii Sbornik, vol 17, № 3 pp. 72–105.
8. Dobrovolsky N. N., 2017, "The zeta-function is the monoid of natural numbers with unique factorization", Chebyshevskii Sbornik, vol 18, № 4 pp. 187–207.
9. Davenport H., 1971, Mul’tiplikativnaja teorija chisel, Izd-vo Nauka, Moskva, 200 p.
10. Gurvic A., Kurant R., 1968, Teorija funkcij, Izd-vo Nauka, Moskva, 618 p.
11. Prahar K., 1967, Raspredelenie prostyh chisel, per. s nem, Izd-vo Mir, Moskva, 511 p.
12. Privalov I. I., 1977, Vvedenie v teoriju funkcij kompleksnogo peremennogo, Izd-vo Nauka, Moskva, 444 p.
13. Stenli R., 1990, Perechislitel’naja kombinatorika, Izd-vo Mir, Moskva, 440 p.
14. Titchmarsh E. K., 1952, Teorija dzeta-funkcii Rimana Izd-vo I-L, Moskva, 407 p.
15. Chandrasekharan K., 1974, Vvedenie v analiticheskuju teoriju chisel, Izd-vo Mir, Moskva, 188 p.
16. Chandrasekharan K., 1975, Arifmeticheskie funkcii, per. s angl, Izd-vo Nauka, Moskva, 272 p.
17. Davenport H., Heilbronn H., 1936, "On the zeros of certain Dirichlet series", J. London Math. Soc. Vol. 11. pp. 181–185.
18. Dobrovolskaya L. P., Dobrovolsky M. N., Dobrovol’skii N. M., Dobrovolsky N. N., 2014, "On Hyperbolic Zeta Function of Lattices", In: Continuous and Distributed Systems. Solid Mechanics and Its Applications, Vol. 211. pp. 23–62. DOI:10.1007/978-3-319-03146-0_2.
Review
For citations:
Dobrovolsky N.N. On monoids of natural numbers with unique factorization into prime elements. Chebyshevskii Sbornik. 2018;19(1):79-105. (In Russ.) https://doi.org/10.22405/2226-8383-2018-19-1-79-105