Preview

Чебышевский сборник

Расширенный поиск

СМЕШАННАЯ СОВМЕСТНАЯ УНИВЕРСАЛЬНОСТЬ ДЛЯ L-ФУНКЦИЙ КЛАССА СЕЛЬБЕРГА И ПЕРИОДИЧЕСКИХ ДЗЕТА-ФУНКЦИЙ ГУРВИЦА

https://doi.org/10.22405/2226-8383-2015-16-1-219-231

Полный текст:

Аннотация

В 1975 г. российский математик С. М. Воронин открыл свойство универсальности дзета-функции Римана ζ(s), s = σ + it. Грубо говоря, это означает, что широкого класса аналитические функции могут быть при- ближены равномерно на компактных подмножествах полоса {s ∈ C : 1/2 < σ < 1} сдвигами ζ(s + iτ ), τ ∈ R. Позже окозалось, что и многие другие классические дзета и L-функции также обладают универсальностью в смысле Воронина. Кроме того, некоторые дзета и L-функции имеют совместное свойство универсальности. В этом случае, данный набор аналитических функций одновременно приближается сдвигами дзета или L-функций. В статье мы даем рассширенный текст нашего доклада, прочитанного на конференции, посвященной памяти известного числовика профессора А. А. Карацубы. Статья содержит обзор основных результатов о так называемой смешанной совместной универсальности, начало которой было было дано японским математиком Г. Мишу в 2007, доказавшим сов- местную универсальность дзета-функций Римана и Гурвица. В широком смысле смешанная совмесная универсальность понимается как совмесная универсальность дзета и L-функций, имеющих эйлеровское произведение по простым числам и неимеющих такого произведения. В 1989 г. А. Сельберг ввел замечательный класс S рядов Дирихле, удовлетворяющих некоторым натуральным условиям, включая эйлеровское прозведение. Периодические дзета-функции Гурвица являются обобщени- ем классических дзета-функций Гурвица и не имеют эйлеровного произ- ведения. В статье формулируется новая теорема о смешанной совместной универсальности для L-функций из класса Сельберга и периодических дзета-функций Гурвица. Для доказатеьства может быть применен вероятностный метод.

Об авторе

Р. Мацайтене
Institute of Informatics, Mathematics and E. Studies, Siauliai University
Россия


Список литературы

1. Bagchi B. The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series. Ph. D. Thesis. Calcutta: Indian Statistical Institute, 1981.

2. Genys J., Macaitien˙e R., Raˇckauskien˙e S., Siauˇci¯unas D. A mixed joint ˇ universality theorem for zeta-functions // Math. Modelling and Analysis. 2010. Vol. 15, No. 4. P. 431–446.

3. Gonek S. M. Analytic properties of zeta and L-functions. Ph. D. Thesis. University of Michigan, 1979.

4. Javtokas A., Laurinˇcikas A. The universality of the periodic Hurwitz zetafunctions // Integral Transf. Spec. Funct. 2006. Vol. 17. P. 711–722.

5. Kaczorowski J., Perelli A. The Selberg class: a survey // In: Number Theory in Progress. Proc. of the Intern. Conf. in honor of the 60th birthday of A. Schinzel (Zakopane, 1997). V. 2: Elementary and Analytic Number Theory, K. Gy¨ory et al. (eds.). Walter De Gruyter, Berlin. 1999. P. 953–992.

6. Kaˇcinskait˙e R., Laurinˇcikas A. The joint distribution of periodic zeta-functions // Studia Sci. Math. Hung. 2011. Vol. 48, No. 2. P. 257–279.

7. Laurinˇcikas A. Limit Theorems for the Riemann Zeta-Function. Kluwer Academic Publishers, Dordrecht, Boston, London, 1996.

8. Laurinˇcikas A. On joint universality of Dirichlet L-functions // Chebysh. Sb. 2011. Vol. 12, No. 1. P. 124–139.

9. Laurinˇcikas A., Macaitien˙e R. On the universality of zeta-functions of certain cusp forms // In: Analytic Prob. Methods Number Theory, J. Kubilius Memorial Volume, A. Laurinˇcikas et al. (eds.). TEV, Vilnius, 2012. P. 173–183.

10. Laurinˇcikas A., Skerstonait˙e S. Joint universality for periodic Hurwitz zetafunctions. II // In: New Directions in Value-Distribution Theory of Zeta and L-functions (W¨urzburg, 2008), R. Steuding, J. Steuding (Eds.). Shaker Verlag, Aachen. 2009. P. 161–169.

11. Laurinˇcikas A., Siauˇci¯unas D. A mixed joint universality theorem for zeta- ˇ functions. III // In: Analytic Prob. Methods Number Theory, J. Kubilius Memorial Volume, A. Laurinˇcikas et al. (eds.). TEV, Vilnius. 2012. P. 185–195.

12. Macaitien˙e R. On joint universality for the zeta-functions of newforms and periodic Hurwitz zeta-functions // RIMS Koˆkyuˆroku Bessatsu: Functions in Number Theory and Their Probabilistic Aspects. V. B34, K. Matsumoto, S. Akiyama, K. Fukuyama, H. Nakada, H. Sugita, A. Tamagawa (Eds.). 2012. P. 217–233.

13. Matsumoto K. A survey on the theory of universality for zeta and L-functions // In: Number Theory: Plowing and Starring through High Wave Forms, Proceedings of the 7th China-Japan Seminar (Fukuoka, 2013), M. Kaneko et al. (eds.). Ser. on Number Theory and its Appl. V. 11. World Scientific Publishing Co.. 2015. P. 95–144.

14. С. Н. Мергелян Равномерные приближения функций комплексного переменного // УМН 1952. Т. 7, №. 2. С. 31–122 ≡ Amer. Math. Trans. 1954. Vol. 101.

15. Mishou H. The joint value-distribution of the Riemann zeta function and Hurwitz zeta-functions // Lith. Math. J. 2007. Vol. 47. P. 32–47.

16. Nagoshi H., Steuding J. Universality for L-functions in the Selberg class // Lith. Math. J. 2010. Vol. 50, No. 163. P. 293–311.

17. Poceviˇcien˙e V., Siauˇci¯unas D. A mixed joint universality theorem for zeta- ˇ functions. II // Math. Modell. and Analysis. 2014. Vol. 19. P. 52–65.

18. Selberg A. Old and new conjectures and results about a class of Dirichlet series // In: Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989), E. Bombieri et al. (Eds). Univ. Salerno, Salerno. 1992. P. 367– 385.

19. Steuding J. On the universality for functions in the Selberg class // In: Proc. of the Sesion in Analytic Number Theory and Diophantine Equations (Bonn, 2002), D. R. Health-Brown and B. Z. Moroz (eds). Bonner Math. Schriften. 2003. Vol. 360. P. 22.

20. Steuding J. Value-Distribution of L-Functions. Lecture Notes Math. V. 1877. Springer-Verlag, Berlin-Heidelberg, 2007.

21. Воронин С. М. Теорема об “универсальности” дзета-функции Римана // Изв. АН СССР. Сер. матем. 1975. Т. 39. С. 475–486. ≡ Math. USSR Izv. 1975. Vol. 9. P. 443–453.

22. Воронин С. М. Функциональная независимость L-функций Дирихле // Acta Arith. 1975. Vol. 27. P. 493–503.

23. Voronin S. M. Analytic properties of generating functions of arithmetical objects. Diss. Doctor. Phys.-Matem. Nauk. Matem. Institute V. A. Steklov, Moscow, 1977 (Russian).

24. Walsh J. L. Interpolation and Approximation by Rational Functions in the Complex Domain, Amer. Math. Soc. Colloq. Publ. 1960. Vol. 20.


Для цитирования:


Мацайтене Р. СМЕШАННАЯ СОВМЕСТНАЯ УНИВЕРСАЛЬНОСТЬ ДЛЯ L-ФУНКЦИЙ КЛАССА СЕЛЬБЕРГА И ПЕРИОДИЧЕСКИХ ДЗЕТА-ФУНКЦИЙ ГУРВИЦА. Чебышевский сборник. 2015;16(1):219-231. https://doi.org/10.22405/2226-8383-2015-16-1-219-231

For citation:


Macaitien˙e R. MIXED JOINT UNIVERSALITY FOR L-FUNCTIONS FROM SELBERG’S CLASS AND PERIODIC HURWITZ ZETA-FUNCTIONS. Chebyshevskii Sbornik. 2015;16(1):219-231. (In Russ.) https://doi.org/10.22405/2226-8383-2015-16-1-219-231

Просмотров: 80


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)