Preview

Chebyshevskii Sbornik

Advanced search

JOINT DISCTRETE UNIVERSALITY OF DIRICHLET L-FUNCTIONS. II

https://doi.org/10.22405/2226-8383-2015-16-1-205-218

Abstract

In 1975, S. M. Voronin obtained the universality of Dirichlet L-functions L(s, χ), s = σ +it. This means that, for every compact K of the strip {s ∈ C : 1 2 < σ < 1}, every continuous non-vanishing function on K which is analytic in the interior of K can be approximated uniformly on K by shifts L(s+iτ, χ), τ ∈ R. Also, S. M. Voronin investigating the functional independence of Dirichlet L-functions obtained the joint universality. In this case, a collection of analytic functions is approximated simultaneously by shifts L(s + iτ, χ1), . . . , L(s + iτ, χr), where χ1, . . . , χr are pairwise non-equivalent Dirichlet characters. The above universality is of continuous type. Also, a joint discrete universality for Dirichlet L-functions is known. In this case, a collection of analytic functions is approximated by discrete shifts L(s + ikh, χ1), . . . , L(s + ikh, χr), where h > 0 is a fixed number and k ∈ N0 = N ∪ {0}, and was proposed by B. Bagchi in 1981. For joint discrete universality of Dirichlet L-functions, a more general setting is possible. In [3], the approximation by shifts L(s + ikh1, χ1), . . . , L(s+ikhr, χr) with different h1 > 0, . . . , hr > 0 was considered. This paper is devoted to approximation by shifts L(s + ikh1, χ1), . . . , L(s + ikhr1 , χr1 ), L(s + ikh, χr1+1), . . . , L(s + ikh, χr), with different h1, . . . , hr1 , h. For this, the linear independence over Q of the set L(h1, . . . , hr1 , h; π) = { (h1 log p : p ∈ P), . . . ,(hr1 log p : p ∈ P), (h log p : p ∈ P); π } , where P denotes the set of all prime numbers, is applied.

About the Authors

A. Laurinˇcikas
Faculty of Mathematics and Informatics, Vilnius University
Latvia


D. Korsakien˙e
Institute of Informatics, Mathematics and E-studies, Siauliai University, P. Viˇsinskio ˇ
Lithuania


D. Siauˇci¯unas

Lithuania


References

1. Bagchi, B. 1981, "The Statistical Behaviour and Universality Properties of the Riemann Zeta-function and Other Allied Dirichlet Series" , Ph. D. Thesis. Calcutta: Indian Statistical Institute.

2. Billingsley, P. 1968, "Convergence of Probability Measures" , New York: Wiley.

3. Dubickas, A. & Laurinˇcikas, A. 2015, "Joint discrete universality of Dirichlet L-functions" , Archiv Math. Vol. 104. P. 25–35.

4. Heyer, H. 1974, "Probability Measures on Locally Compact Groups" , Berlin, Heidelberg, New York: Springer-Verlag.

5. Laurinˇcikas, A. 2011, "On joint universality of Dirichlet L-functions" , Chebyshevskii Sb. Vol. 12, No. 1. P. 129–139.

6. Mergelyan, S. N. 1952, "Uniform approximations to functions of a complex variable" , Usp. Matem. Nauk. Vol. 7, No. 2. P. 31–122 (Russian) ≡ Amer. Math. Trans. 1954. Vol. 101.

7. Montgomery, H. L. 1971, "Topics in Multiplicative Number Theory." , Lecture Notes in Math. Vol. 227. Berlin: Springer.

8. Steuding, J. 2007, "Value-Distribution of L-functions." , Lecture Notes in Math. Vol. 1877. Berlin, Heidelberg: Springer-Verlag.

9. Voronin, S. M. 1975, "Theorem on the "universality" of the Riemann zetafunction." , Izv. Akad. Nauk SSSR. Vol. 39. P. 475–486 (in Russian) ≡ Math. USSR Izv. 1975. Vol. 9. P. 443–453.

10. Voronin, S. M. 1975, "The functional independence of Dirichlet L-functions" , Acta Arith. Vol. 27. P. 493–503 (Russian).


Review

For citations:


Laurinˇcikas A., Korsakien˙e D., Siauˇci¯unas D. JOINT DISCTRETE UNIVERSALITY OF DIRICHLET L-FUNCTIONS. II. Chebyshevskii Sbornik. 2015;16(1):205-218. (In Russ.) https://doi.org/10.22405/2226-8383-2015-16-1-205-218

Views: 582


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)