ON THE ASYMPTOTIC DISTRIBUTION OF ALGEBRAIC NUMBERS WITH GROWING NAIVE HEIGHT
https://doi.org/10.22405/2226-8383-2015-16-1-191-204
Abstract
References
1. Baker, A. & Schmidt, W. 1970, “Diophantine approximation and Hausdorff dimension”, Proc. London Math. Soc., vol. 21, no. 3, pp. 1–11.
2. Bernik, V. I. 1989, “The exact order of approximating zero by values of integral polynomials”, Acta Arith., vol. 53, no. 1, pp. 17–28. (In Russian)
3. Beresnevich, V. 1999, “On approximation of real numbers by real algebraic numbers”, Acta Arith., vol. 90, no. 2, pp. 97–112.
4. Bernik, V. I. & Vasil’ev, D. V. 1999, “A Khinchin-type theorem for integervalued polynomials of a complex variable”, Trudy Instituta Matematiki, Natl. Akad. Nauk Belarusi, Inst. Mat., vol. 3, pp. 10–20. (In Russian) 5. Koleda, D. V. 2012, “Distribution of real algebraic numbers of a given degree”, Dokl. Nats. Akad. Nauk Belarusi, vol. 56, no. 3, pp. 28–33. (In Belarusian)
5. Koleda, D. V. 2013, “On the number of polynomials with a given number of roots on a finite interval”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, no. 1, pp. 41–49. (In Russian)
6. Koleda, D. V. 2013, “Distribution of real algebraic numbers of the second degree”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, no. 3, pp. 54–63. (In Russian)
7. Masser, D. & Vaaler, J. D. 2008, “Counting Algebraic Numbers with Large Height I”, Diophantine Approximation. Developments in Mathematics, vol. 16, pp. 237–243.
8. van der Waerden, B. L. 1936, “Die Seltenheit der reduziblen Gleichungen und der Gleichungen mit Affekt”, Monatshefte f¨ur Mathematik, vol. 43, no. 1, pp. 133– 147.
9. Prasolov, V. V. 2001, Mnogochleny [Polynomials], 2-nd ed., MCCME, Moskow. (Russian)
10. Davenport, H. 1951, “On a principle of Lipschitz”, J. London Math. Soc., vol. 26, pp. 179–183. Davenport, H. 1964, “Corrigendum: «On a principle of Lipschitz»”, J. London Math. Soc., vol. 39, pp. 580.
11. Dubickas, A. 2014, “On the number of reducible polynomials of bounded naive height”, Manuscripta Mathematica, vol. 144, no. 3–4, pp. 439–456.
12. Mikol´as, M. 1949, “Farey series and their connection with the prime number problem. I”, Acta Univ. Szeged. Sect. Sci. Math., vol. 13, pp. 93–117.
13. Niederreiter, H. 1973, “The distribution of Farey points”, Math. Ann., vol. 201, pp. 341–345.
14. Brown, H. & Mahler, K. 1971, “A generalization of Farey sequences: Some exploration via the computer”, J. Number Theory, vol. 3, no. 3, pp. 364–370.
15. Cobeli, C. & Zaharescu, A. 2003, “The Haros-Farey sequence at two hundred years”, Acta Univ. Apulensis Math. Inform., no. 5, pp. 1–38.
Review
For citations:
Koleda D.V. ON THE ASYMPTOTIC DISTRIBUTION OF ALGEBRAIC NUMBERS WITH GROWING NAIVE HEIGHT. Chebyshevskii Sbornik. 2015;16(1):191-204. (In Russ.) https://doi.org/10.22405/2226-8383-2015-16-1-191-204