ON DIRICHLET APPROXIMATION POLYNOMIALS AND SOME PROPERTIES OF DIRICHLET L-FUNCTIONS
https://doi.org/10.22405/2226-8383-2017-18-4-296-304
Abstract
In this paper we study the analytic properties of Dirichlet L -functions in the critical strip, characteristic for almost periodic functions. The research is based on Approximation approach, consisting in the construction of Dirichlet polynomials, which are almost periodic functions, "rapidly convergent"in the critical strip to Dirichlet L -functions.
On this path, for any rectangle lying in the critical strip, the existence of ε -almost period for the Dirichlet L-function, we obtain the estimate constants of uniform continuity. Issues related to studying other properties of Dirichlet L -functions are discussed.
About the Authors
O. A. MatveevaRussian Federation
Saratov.
V. N. Kuznetsov
Russian Federation
Saratov.
References
1. Matveeva, O. A. 2013, “Approksimacionnye polinomy i povedenie L-funkcij Dirihle v kriticheskoj polose“, Saratov: izd-vo SGU, Izvestija Sarat. un-ta. Matematika, Mehanika. Informatika., iss. 4, vol. 2, pp. 80 – 84.
2. Matveeva, O. A. 2014, “Analiticheskie svojstva opredelennyh klassov rjadov Dirihle i nekotorye zadachi teorii L-funkcij Dirihle“, Ulyanovsk: Thesis for the academic degree of the Ph.D., pp. 110.
3. Kuznetsov, V. N. Matveeva, O. A. 2016, “O granichnom povedenii odnogo klassa rjadov Dirihle s mul’tiplikativnymi kojefficientami“, Tula: izd-vo TPGU, Chebyshevskij sbornik., iss. 4, vol. 17, pp. 115 – 124.
4. Demidovich B. P. 1998, Lekcii po matematicheskoj teorii ustojchivosti , Moscow, MSU publ., pp. 480.
5. Levin B. Ja. 1956, Raspredlenie kornej celyh funkcij , Izd-vo tehniko-teoreticheskoj literatury., pp. 632.
6. Karatsuba, A. A. 1983, Osnovy analiticheskoj teorii chisel, Moscow, Nauka, pp. 239.
7. Chudakov N. G. 1947, Vvedenie v teoriju L-funkcij Dirihle , Izd-vo tehniko-teoreticheskoj literatury., pp. 202.
8. Matveev V. A. Matveeva, O. A. 2013, “O povedenii v kriticheskoj polose rjadov Dirihle s konechnoznachnymi mul’tiplikatinymi kojefficientami i s ogranichennoj summatornoj funkciej“, Tula: izd-vo TPGU, Chebyshevskij sbornik., iss. 2, vol. 13, pp. 106 – 116.
9. Voronin S. M. 1975, “Ob universal’nosti dzeta-funkcii Rimana“, Izv. ANSSSR, Serija Matematika, №3, vol. 39, pp. 457 – 486.
10. Voronin S. M. 1977, “Analiticheskie svojstva proizvodjashhih funkcij Dirihle arifmeticheskih ob’ektov:“, MIAN SSSR : Thesis for the academic degree of Doctor of Science., pp.90.
11. Voronin S. M. ˙Karatsuba, A. A. 1983, Dzeta-funkcija Rimana , Moscow, Fizmatlit, pp. 376.
12. Mishou H. 2007, “The joint distribution of the Riemann zeta-function and Hurwitz zetafunction“ Lith. Math J., vol. 47, №1, pp. 32 – 47.
13. Kuznetsov, V. N. Matveev, V. A. 2015, “K zadache chislennogo opredelenija nulej L-funkcij Dirihle chislovyh polej“, Tula: izd-vo TPGU, Chebyshevskij sbornik., iss. 2, vol. 16, pp. 144 – 155.
14. Matveev, V. A. 2015, “Ob odnom chislennom algoritme opredelenija nulej L-funkcij Dirihle chislovyh polej“, Tula: izd-vo TPGU, Materialy XXIII Mezhdunarodnoj konferencii "Algebra, teorija chisel: sovremennye problemy i prilozhenija", pp. 234 – 235.
15. Matveev V. A. Matveeva, O. A. 2015, “Ob odnom podhode poluchenija plotnostnyh teorem dlja nulej L-funkcij Dirihle chislovyh polej.“, Tula: izd-vo TPGU, Materialy XXIII Mezhdunarodnoj konferencii "Algebra, teorija chisel: sovremennye problemy i prilozhenija", pp. 235 – 236.
Review
For citations:
Matveeva O.A., Kuznetsov V.N. ON DIRICHLET APPROXIMATION POLYNOMIALS AND SOME PROPERTIES OF DIRICHLET L-FUNCTIONS. Chebyshevskii Sbornik. 2017;18(4):296-304. (In Russ.) https://doi.org/10.22405/2226-8383-2017-18-4-296-304