NEW PROPERTIES OF ALMOST NILPOTENT VARIETIES WITH INTEGER EXPONENTS
https://doi.org/10.22405/2226-8383-2017-18-4-305-324
Abstract
Almost nilpotent varieties of nonassociative algebras over a field of zero characteristic in the class of all algebras satisfying identical relation x(yz) ≡ 0 are studied. Earlier in this class of algebras for each natural number m ≥ 2 the algebra Am generating the almost nilpotent variety var(Am) of exponential growth with exponent of m was defined. In the paper numerical characteristics of varieties var(Am) are studied.
To this end in the relatively free algebras of the varieties var(Am) the spaces of multilinear elements corresponding to left normed polynomials with fixed variable on the first position are considered.
Each space is considered as completely reducible module of the symmetric group and multiplicities in the decomposition of the corresponding cocharacter into sum of irreducible characters are calculated. The multiplicities corresponding to the multilinear parts of relatively free algebras of the variety var(Am) are defined by the calculated values. Colengths of the varieties var(Am), m≥ 2 are obtained using this method. For each m ≥ 2 the set of identical relations that defines the variety var(Am) is obtained.
References
1. Giambruno, A. & Zaicev, M. 2005, Polynomial Identities and Asymptotic Methods, AMS Mathematical Surveys and Monographs, Providence, R.I. doi: 10.1090/surv/122
2. Bahturin, Yu. A. 1987, Identical relations in Lie algebras, VNU Science Press, Utrecht.
3. Drensky, V. 2000, Free Algebras and PI-Algebras. Graduate Course in Algebra, Springer-Verlag, Berlin-Heidelberg-Singapore.
4. Shulezhko, O. V. 2015, “On almost nilpotent varieties in different classes of linear algebras”, Chebyshevskiy Sbornik, vol. 16, no. 1, pp. 67–88.
5. Mishchenko, S., Valenti, A. 2014, “An almost nilpotent variety of exponent 2”, Israel Journal of Mathematics, vol. 199, no. 1, pp. 241–257. doi: 10.1007/s11856-013-0029-4
6. Mishchenko, S. P. 2010, “Varieties of linear algebras with colength one”, Moscow University Mathematics Bulletin, vol. 65, no. 1, pp. 23-–27. doi: 10.3103/S0027132210010043
7. Frolova, Yu. Yu., Shulezhko, O.V. 2015, “Almost nilpotent varieties of Leibniz algebras”, Prikladnaya Diskretnaya Matematika, no. 2(28), pp. 30—36. doi: 10.17223/20710410/28/3
8. Mishchenko, S., Valenti, A. 2015, “On almost nilpotent varieties of subexponential growth”, Journal of Algebra, vol. 423, no. 1, pp. 902–915. doi: 10.1016/j.jalgebra.2014.10.038
9. Mishchenko, S. P., Panov, N. P., Frolova, Yu. Yu., Nguyen, Trang 2016, “On the varieties of commutative metabelian algebras”, Fundamentalnaya i prikladnaya matematika, vol. 21, no. 1, pp. 165–180.
10. Mishchenko, S. P., Shulezhko, O. V. 2014, “Description of almost nilpotent anticommutative metabelian varieties of subexponential growth”, Mal’tsevskie Chteniya : tez. dokl. mezhdunarod. konf. (Mal’tsev Meeting : collection of abstracts of international conference), Novosibirsk, pp. 110.
11. Mishchenko, S. P. 2017, “Infinite periodic words and almost nilpotent varieties”, Moscow University Mathematics Bulletin, vol. 72, no. 2, pp. 173–176
12. Shulezhko, O. V. 2014, “New properties of almost nilpotent variety of exponent 2”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., vol. 14, no. 3, pp. 316–320.
13. Mishchenko, S. P., Shulezhko, O. V. 2015, “Almost nilpotent varieties of arbitrary integer exponent”, Moscow University Mathematics Bulletin, vol. 70, no. 2, pp. 92—95. doi: 10.3103/ S0027132215020084
14. Panov, N. P. 2017, “On Almost Nilpotent Varieties with Integer PI-Exponent”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., vol. 17, no. 3, pp. 331–343. doi: 10.18500/1816-97912017-17-3-331-343
15. Zaitsev, M. V., Mishchenko, S. P. 2006, “Colength of varieties of linear algebras”, Math. Notes, vol. 79, no. 4, pp. 511—517. doi: 10.1007/s11006-006-0056-0
16. Graham, R. L., Knuth, D. E. & Patashnik, O. 1994, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley.
Review
For citations:
Panov N.P. NEW PROPERTIES OF ALMOST NILPOTENT VARIETIES WITH INTEGER EXPONENTS. Chebyshevskii Sbornik. 2017;18(4):305-324. (In Russ.) https://doi.org/10.22405/2226-8383-2017-18-4-305-324