INVARIANT FUNCTIONS ON FREE GROUPS AND SPECIAL HNN-EXTENSIONS
https://doi.org/10.22405/2226-8383-2017-18-1-109-122
Abstract
In this paper we are considering questions about the possibility of existence of invariant nontrivial pseudocharacters on free groups. It is proved that nontrivial pseudocharacters exist on a certain type of HNN-expansions in complex cases. We got some results about the width of verbal subgroups generated by words from commutator subgroup and non-triviality of the second group of bounded cohomologies for considered HNN-expansions. Thus, partial answer to the question, formulated R. I. Grigorchuk, is received. Pseudocharacter is the real functions f from group G to R such that f(xy)-f(x)-f(y) for some " > 0 and for any x; y 2 G and f(xn) = nf(x) 8n 2 Z, 8x 2 G. A pseudocharacter is called non-trivial if '(ab)
About the Author
D. Z. KaganRussian Federation
Associate Professor, Ph. D. of mathematics, the department of Mathematics
References
1. Shtern, А. I. 1991, "Quasirepresentations and pseudorepresentations", Funct. Anal. Appl. Vol. 25, no.2, pp. 70-73.
2. Faiziev, V. А., 1993, "The stability of a functional equation on groups", Russian Math.Surveys. Vol.48, no.1, pp. 193-194.
3. Grigorchuk, R. I. "Some results an bounded cohomology", Combinatorial and Geometric Group Theory (Edinburg 1993). London Math. Soc. Lecture Notes Ser..V.284. Cambridge: Cambridge University Press 1994 pp. 111-163
4. Grigorchuk, R. I. 1996, "Bounded cohomology of group constructions", Mat. Zametki, vol. 59, no. 4, рр. 546-550.
5. Bardakov, V. G. 1997, "On the width of verbal subgroups of some free constructions", Algebra and logic, vol. 36, no. 5, рр. 494-517.
6. Kagan, D. Z. 2004, "Existence of nontrivial pseudo-characters on anomalous group products", Moscow Univ. Math. Bull., no. 6, pp. 24–28.
7. Kagan, D. Z. 2008, "Pseudocharacters on anomalous products of locally indicable groups", J. Math. Sci. (N. Y.), vol. 149, no. 3, рр. 1224-1229.
8. Merzlyakov, Y. I. 1987, "Rational groups", Moscow: Nauka.
9. Dobrynina, I. V. 2000, "On the width in free products with amalgamation", Mat. Zametki, vol. 68, no. 3, рр. 353-359.
10. Dobrynina, I. V. 2009, "Solution of the width problem in amalgamated free products", Fundam. Prikl. Mat., vol. 15, no. 1, рр. 23-30.
11. Dobrynina, I. V. & Bezverkhnii, V. N. 2001, "On width in some class of groups with two generators and one defining relation", Proc. Steklov Inst. Math. Algebra. Topology, suppl. 2, рр. 53–60.
12. Dobrynina, I. V., Kagan, D. Z., 2015, "On the width of verbal subgroups in some classes of groups", Chebyshevski. Sb., vol. 16, no. 4 (56), pp. 150-163.
13. Kagan, D. Z., 2015, "Width of verbal subgroups for groups with one defining relation" , XIII International Conference "Algebra, number theory and discrete geometry: Modern Problems and Application" , Tula, рр. 76-78.
14. Kagan, D. Z., 2017 "Pseudocharacters on groups with one defining relation and non-trivial center" , // Matematicheskii Sbornik, 2017. vol.208., no 1., pp. 80–96.
15. Lyndon, R. C., Schupp, P. E., 1977, "Combinatorial group theory", Ergeb. Math. Grenzgeb., 89, Springer-Verlag, Berlin–New York.
16. Magnus, W., Karrass, A., Solitar, D., 1966, "Combinatorial group theory. Presentations of groups in terms of generators and relations", Pure Appl. Math., 13, Intersci. Publ., John Wiley and Sons, Inc., New York.
17. Moldavanskii, D. I., 1968, “Certain subgroups of groups with a single defining relation”,Siberian Math. J., vol.8 no 6, pp. 1039–1048.
Review
For citations:
Kagan D.Z. INVARIANT FUNCTIONS ON FREE GROUPS AND SPECIAL HNN-EXTENSIONS. Chebyshevskii Sbornik. 2017;18(1):109-122. (In Russ.) https://doi.org/10.22405/2226-8383-2017-18-1-109-122