Preview

Chebyshevskii Sbornik

Advanced search

ALGEBRAIC INDEPENDENCE OF CERTAIN ALMOST POLYADIC SERIES

https://doi.org/10.22405/2226-8383-2016-17-3-166-177

Abstract

The paper describes the arithmetic nature of the values at integer points of series from the so-called class of \(F\)--series which constitute a solution of a system of linear differential equations with coefficients --- rational functions in z.

We consider a subclass of the series consisting of the series of the form

\sum_{n=0}^\infty a_n\cdot n!\; z^n

where \(a_n\in\mathbb Q\), \(|a_n|\leq e^{c_1 n}\), \(n=0,1,\ldots\) with some constant \(c_1\). Besides there exists a sequence of positive integers \(d_n\) such that \(d_n\; a_k\in\mathbb Z\), \(k=0,\ldots,n\) and \(d_n=d_{0,n} d_n\), \(d_{0,n}\in\mathbb N\), \mbox{\(n=0,1,\ldots,d\in\mathbb N\)} and for any \(n\) the number \(d_{0,n}\) is divisible only by primes \(p\) such that \(p\leqslant c_2 n\). Moreover

$$ord_p n \leq c_3\left(\log_p n+\frac{n}{p^2}\right).$$

We say then that the considered series belongs to the class \(F(\mathbb{Q},c_1,c_2,c_3,d)\).
Such series converge at a point \(z\in\mathbb Z\), \(z\ne 0\) in the field \(\mathbb Q_p\) for almost all primes \(p\).

The direct product of the rings \(\mathbb Z_p\) of \(p\)--adic integers over all primes \(p\) is called the ring of polyadic integers. It's elements have the form
$$\mathfrak{a} = \sum_{n=0}^\infty a_n\cdot n!,\quad a_n\in\mathbb Z$$

and they can be considered as vectors with coordinates \(\mathfrak{a}^{(p)}\) which are equal to the sum of the series \(\mathfrak{a}\) in the field \(\mathbb Q_p\) (This direct product is infinite).


For any polynomial \(P(x)\) with integer coefficients we define \(P(\mathfrak{a})\) as the vector with coordinates \(P(\mathfrak{a}^{(p)})\) in \(\mathbb Q_p\). According to the classification, described in V. G. Chirskii's works we call polyadic numbers \(\mathfrak{a}_1,\ldots,\mathfrak{a}_m\) infinitely algebraically independent, if for any nonzero polynomial \(P(x_1,\ldots,x_m)\) with integer coefficients there exist infinitely many primes \(p\) such that
$$P\left(\mathfrak{a}_1^{(p)},\ldots,\mathfrak{a}_m^{(p)}\right)\ne 0 $$
in \(\mathbb Q_p\).


The present paper states that if the considered \(F\)--series \(f_1,\ldots,f_m\) satisfy a system of differential equations of the form
$$P_{1,i}y_i^\prime + P_{0,i}y_i = Q_i, i=1,\ldots,m$$
where the coefficients \(P_{0,i}, P_{1,i}, Q_i\) are rational functions in \(z\) and if \(\xi\in\mathbb Z\), \(\xi\ne 0\), \(\xi\) is not a pole of any of these functions and if
$$\exp\left(\int\left(\frac{P_{0,i}(z)}{P_{1,i}(z)}-\frac{P_{0,j}(z)}{P_{1,j}(z)}\right)dz\right)\not\in\mathbb C(z)$$
then
\(f_1(\xi),\ldots,f_m(\xi)\) are infinitely algebraically independent almost polyadic numbers.


For the proof we use a modification of the Siegel-Shidlovsky's method and V. G. Chirskii's. Salikhov's approach to prove the algebraic independence of functions, constituting a solution of the above system of differential equations.

About the Author

V. Yu. Matveev

Russian Federation


References

1. Chirskii V. G. (2014), ”Arithmetic properties of polyadic series with periodic coefficients”, Doklady Mathematics, v.90, no.3, pp. 766–768.

2. Bertrand D., Chirskii V. G, Yebbou Y. (2004), ”Effective estimates for global relations on Euler-type series”, Ann.Fac.Sci.Toulouse.-V.XIII., no. 2, pp. 241–260.

3. Chirskii V. G. (2015), ”Arithmetic properties of polyadic integers”, Tchebyshevskiy sbornik, v. 16, no. 1, pp. 254–264.(Russian)

4. Shidlovskii A. B. (1989), ”Transcendental numbers”, W.de Gruyter.

5. Salikhov V. Kh. (1973), ”On algebraic independence of the values of E-functions which satisfy first order linear differential equations”, Mat. Zametki, v.13, no. 1, pp. 29–40.

6. Chirskii V. G. (1990), ”Global relations”, Math.Notes, 48, pp. 795–798.

7. Nesterenko Yu. V. (1995), ”Hermite-Pade approximations of generalized hypergeometric functions”, Engl.transl. Russ.Acad.Sci.Sb.Math, 85, pp. 189–219.

8. Chirskii V. G. (2015), ”On the arithmetic properties Euler series”, Vestnik Mosc.Univ., no. 1, pp. 59–61.(Russian)

9. Postnikov A. G. (1971), ”Introduction to analytic number theory”, Moscow, Nauka, 416 p. (Russian)

10. Pontryagin L. S. (1984), ”Continious groups”, Moscow, Nauka, 529 p. .(Russian)

11. Novoselov E. V. (1960), ”Topological theory of divisibility”, Uchen.zapiski Elabugh. Ped. Inst, 8, pp. 3–23.

12. Chirskii V. G., Shakirov R. F. (2013), ”On representations of integers in DBNS”, Tchebyshevskiy sbornik, v.14, no. 1 (20153), pp. 254–264.(Russian)

13. Matveev V. Yu., Chirskii V. G. (2013), ”On a series of products of terms of an arithmetic progression”, Prepodavatel 21 veka, no. 4, pp. 245–254.(Russian)

14. Matveev V. Yu. (2013), ”On the values of a certain series at polyadic points, well approximable by positive integers”, Prepodavatel 21 veka, no. 4, pp. 339–354 .(Russian)

15. Chirskii V. G., Matveev V. Yu. (2013), ”On certain properties of polyadic expansions”, Tchebyshevskiy sbornik, v.14, no. 2, pp. 163–172.(Russian)

16. Chirskii V. G. (2011), ”Estimates of linear forms and polynomials in polyadic integers”, Tchebyshevskiy sbornik, v.12, no. 4, pp. 129–134.(Russian)

17. Chirskii V. G. (2012), ”Polyadic estimates for

18. Chirskii V. G., Matveev V. Yu. (2013), ”On a representation of positive integers”, Tchebyshevskiy sbornik, v.14, no. 6 , pp. 92–101.(Russian)

19. Chirskii V. G., Matveev V. Yu. (2013), ”On a representation of positive integers”, Vestnik Mosc.Univ., no. 1, pp. 57–59.(Russian)

20. Chirskii V. G. , ”On the arithmetic properties of generalized hypergeometric series with irrational parameters”, Izvestiya:Mathematics, 78:6, pp. 1244–1260.

21. Chirskii V. G. (1989), ”On nontrivial global relations”, Vestnik Mosc.Univ., no. 5, pp. 33–36.(Russian)

22. Chirskii V. G. (1990), ”On algebraic relations in local fields”, Vestnik Mosc.Univ., no. 3,pp. 92–95.(Russian)

23. Chirskii V. G. (1991), ”Global relations and hypergeometric series”, Uspekhi Mat.Nauk, v. 48, no. 6, pp. 221–222.

24. Chirskii V. G. (1992), ”On algebraic relations in non-archimedean fields”, Funct.Anal.Appl., 26, pp. 108–115.

25. Chirskii V. G. (1994), ”On series which are algebraically independent in all local fields”, Vestnik Mosc.Univ., no. 3, pp. 93–95.(Russian)

26. Chirskii V. G. (1994), ”Estimates of polynomials and linear forms in direct products of fields” , Vestnik Mosc.Univ., no. 4, pp. 35–39.(Russian)

27. Chirskii V. G., Bundschuh P. (2004), ”Algebraic independence of elements from C

28. Chirskii V. G. (2005), ”Siegel’s method in

29. Chirskii V. G. (2006), ”A generalization of the notion of global relation”, Zapiski nauch. Semin POMI, 322, pp. 220–238.

30. Chirskii V. G., Bundschuh P. (2002), ”Algebraic independence of elements from C


Review

For citations:


Matveev V.Yu. ALGEBRAIC INDEPENDENCE OF CERTAIN ALMOST POLYADIC SERIES. Chebyshevskii Sbornik. 2016;17(3):166-177. (In Russ.) https://doi.org/10.22405/2226-8383-2016-17-3-166-177

Views: 546


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)