GENERALIZED PROBLEM OF DIVISORS WITH NATURAL NUMBERS WHOSE BINARY EXPANSIONS HAVE SPECIAL TYPE
https://doi.org/10.22405/2226-8383-2016-17-1-270-283
Abstract
Let τk(n) be the number of solutions of the equation x1x2 · · · xk = n in natural numbers x1, x2, . . . , xk. Let Dk(x) = X n6x τk(n). The problem of obtaining of asymptotic formula for Dk(x) is called Dirichlet divisors problem when k = 2, and generalyzed Dirichlet divisors problem when k > 3. This asymptotic formula has the form Dk(x) = xPk−1(log x) + O(xαk+ε), where Pk−1(x) — is the polynomial of the degree k − 1, 0 < αk < 1, ε > 0 — is arbitrary small number. Generalyzed Dirichlet divisor problem has a rich history. In 1849, L. Dirichlet [1] proved , that αk 6 1 − 1
k , k > 2. In 1903, G. Voronoi [2] αk 6 1 − 1 k + 1 , k > 2. (see also [3]) In 1922, G. Hardy and J. Littlewood [4] proved that αk 6 1 − 3 k + 2 , k > 4. In 1979, D. R. Heath-Brown [5] proved that
αk 6 1 − 3 k , k > 8. In 1972, A. A. Karatsuba got a remarkable result [6]. His uniform estimate of the remainder term has the form O(x1− c k2/3 (c1 log x)k), where c > 0, c1 > 0 — are bsolute constants. Let N0 — be a set of natural numbers whose binary expansions have even number of ones. In 1991, the autor [8] solved Dirichlet divisors problem and got the formula X n6X n∈N0 τ (n) = 1 2 X n6X τ (n) + O(Xω ln2 X), where τ (n) — the number of divisors n, ω = 1 2
About the Author
K. M. EminyanRussian Federation
Candidate of Physico-Mathematical Sciences, Associate
Professor.
References
1. Diriclet L. 1849, “ ¨Uber die Bestimmung der mittleren Werte in der Zahlentheorie”. Abh. Akad Berlin (Werke 2, 49 - 66), Math. Abh., 69-83.
2. Voronoi G. 1903, “Sur un probl´eme du calcul des fonctions asymptitiques”, J. Fur die reine und angewandte, Math., 126, 241–282.
3. Landau E. 1912, “ ¨Uber die Anzahl der Gitterpunkte in gewissen Bereichen”. Nacher. K. Gas. Wiss. G¨ottingen, Math.-Phys. Klassen, 6, 687–771.
4. Hardy G., Littlewood J. 1922, “The approximate functional equation in the theory of the zetafunction, with applications to the divisor problems of Dirichlet and Piltz”, Proc. London Maht. Soc. 2, 21, 39–74.
5. D.R. Heath-Brown. 1981, “Recent Progress in Analytic Number Theory”, Symposium Durham, v.1 London: Academic Press.
6. Карацуба А.А. 1972, “Uniform approximation of the remainder term in the Dirichlet divisor problem”, Izv. Akad. Nauk SSSR Ser. Mat., 36:3, 475-483
7. Gelfond, A.O. 1968, “Sur les nombres qui ont des propri´et´es additives et multiplicatives donn´ees” Acta Arith. vol. XII. pp. 259-265.
8. Eminyan, K. M. 1991, “On the Dirichlet divisor problem in some sequences of natural numbers”, Izv. Akad. Nauk SSSR Ser. Mat., 55:3, pp. 680-686
9. Eminyan, K. M. 2014, “The Goldbach problem with primes having binary expansions of a special form”, Izv. RAN. Ser. Mat., 78:1, pp. 215-224
10. Eminyan, K. M. 2011, “On the Mean Values of the Function τk(n) in Sequences of Natural Numbers”, Mat. Zametki, 90:3, 454-463
11. Mauduit, C. et Rivat, J. 2010, “Sur un probl`eme de Gelfond: la somme des chiffres des nombres premiers”, Annals of Mathematics. Second Series. vol. 171. No 3, pp. 1591-1646.
12. Green, B. 2009, “Three topics in additive prime number theory”, Current Developments in Mathematics, vol. 2007, pp.1-41.
13. Karatsuba, A. A. 1983, Osnovy analiticheskoi teorii chisel (Russian), [Fundamentals of the analytical number theory]. Second edition. Nauka, Moscow. 240 p.
14. Voronin, S. M.; Karatsuba, A. A. 1994, Dzeta-funktsiya Rimana. (Russian) [The Riemann zeta function] Fiziko-Matematicheskaya Literatura, Moscow,. 376 p.
15. Montgomery, H.L. 1971, Topics in multiplicative nunmber theory. Springer.
Review
For citations:
Eminyan K.M. GENERALIZED PROBLEM OF DIVISORS WITH NATURAL NUMBERS WHOSE BINARY EXPANSIONS HAVE SPECIAL TYPE. Chebyshevskii Sbornik. 2016;17(1):270-283. (In Russ.) https://doi.org/10.22405/2226-8383-2016-17-1-270-283