MATHEMATICAL MODEL OF INFORMATION SECURITY SYSTEMS BASED ON DIOPHANTINE SETS
https://doi.org/10.22405/2226-8383-2014-15-1-146-154
Abstract
Development of the asymmetric cryptography started with the appearance of the first knapsack information protection system, when, in 1978, Ralph Merkel and Martin Hellman proposed to use different keys for forward and reverse mapping data for encryption. Now this model, like many based on are considered to be insecure. As a result the authority of knapsack systems was low. However, some of these systems are still considered persistent, for example, the model proposed in 1988 by Ben Shore and Ronald Rivest. In the article stated and solved the problem of argumentation of cryptographic strength of the non-standard knapsack information security systems. Justified diophantine difficulties that arise in the study of vulnerabilities of the investigated information security systems. Revealed the qualitative features of non-standard knapsack systems that increase their resistance to known attacks. In this paper, we propose a mathematical model of polyalphabetic cryptosystem, in which the algorithm of inverse transformation of closed text is algorithmically unsolvable problem for the analyst. It’s permeated with the idea K.Shennon, who believed that cryptosystems, containing Diophantine problems, have the greatest variation in the selection of key.
About the Authors
V. O. OsipyanRussian Federation
A. V. Mirzayan
Russian Federation
Y. A. Karpenko
Russian Federation
A. C. Zhuk
Russian Federation
A. H. Arutyunyan
Russian Federation
References
1. Shannon C. Communication theory of secrecy systems Bell System Techn. J. 28, № 4 — 1949. P. 656-715.
2. Diffie W., Hellman M. New directions in cryptography // IEEE Transactions on Information Theory. 1976. Vol. 22. pp. 644-654.
3. Rivest R.L., Chor B. A knapsack-type public key cryptosystem based on arithmetic in finite fields // IEEE Transactions on Information Theory. 1988. Vol. 34. No. 5. pp. 901-909.
4. Shamir A. A polynomial-time algorithm for breaking the basic Merkle - Hellman cryptosystem // Information Theory, IEEE Transactions. 1984. Vol. 30. No. 5. pp. 699–704.
5. Lenstra, Jr. H.W. Integer Programming with a Fixed Number of Variables // Mathematics of Operations Research. 1983. Vol. 8. No. 4. pp. 538-548.
6. Vaudenay S. Cryptanalysis of the Chor-Rivest cryptosystem // CRYPTO. 1998. pp. 243-256.
7. Саломаа А. Криптография с открытым ключом. М.: ИЛ, 1995. 380с.
8. А. П. Алфёров, А. Ю. Зубов, А. С. Кузьмин, А. В. Черемушкин Основы криптографии: учебное пособие для студентов ВУЗ. М.: Гелиос АРВ, 2002. 480 с.
9. В. О. Осипян, А. С. Арутюнян, С. Г. Спирина Моделирование ранцевых криптосистем, содержащих диофантовую трудность // Чебышевский сбор- ник. 2010. Т. XI, вып. 1. С. 209–217.
10. Осипян В. О. Моделирование систем защиты информации содержащих диофантовы трудности. Разработка методов решений многостепенных систем диофантовых уравнений. Разработка нестандартных рюкзачных криптосистем: монография. LAP, 2012. 344 с.
11. Gloden A. Mehrgradide Gleichungen. Groningen, 1944.
12. Dickson L. E. History of the Theory of Numbers. Vol.2. Diophantine Analysis. N.-Y. 1971.
13. Матиясевич Ю. В. Диофантовы множества // Успехи мат. наук. 1972. Т. 27, вып. 5. С. 185–222.
14. Osipyan V. O. Buiding of alphabetic data protection cryptosystems on the base of equal power knapsacks with Diophantine problems // ACM, 2012, pp.124– 129.
15. В. О. Осипян, К. В. Осипян Криптография в упражнениях и задачах. М.: Гелиос АРВ, 2004. 144 с.
16. Osipyan V. O. Different models of information protection system, based on the functional knapsack // ACM, 2011. pp 215–218.
17. В. О. Осипян, Ю. А. Карпенко, А. С. Жук, А. Х. Арутюнян Диофантовы трудности атак на нестандартные рюкзачные системы защиты информации // Известия ЮФУ. Технические науки. 2013. №12 С. 209–215.
Review
For citations:
Osipyan V.O., Mirzayan A.V., Karpenko Y.A., Zhuk A.C., Arutyunyan A.H. MATHEMATICAL MODEL OF INFORMATION SECURITY SYSTEMS BASED ON DIOPHANTINE SETS. Chebyshevskii Sbornik. 2014;15(1):146-154. (In Russ.) https://doi.org/10.22405/2226-8383-2014-15-1-146-154