О НУЛЯХ НЕКОТОРЫХ ФУНКЦИЙ, СВЯЗАННЫХ С ПЕРИОДИЧЕСКИМИ ДЗЕТА-ФУНКЦИЯМИ
https://doi.org/10.22405/2226-8383-2014-15-1-121-130
Аннотация
В статье полученно, что линейная комбинация периодической дзета- функции и периодической дзета-функции Гурвица и более общие комбинации этих функций имеют бесконечно много нулей, лежащих в правой стороне критической полосы.
Об авторах
А. ЛауринчикасРоссия
М. Стонцелис
Россия
Д. Шяучюнас
Россия
Список литературы
1. Bagchi B. The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series. Ph. D. Thesis. Calcutta: Indian Statistical Institute, 1981.
2. Garunkˇstis R., Tamoˇsi¯unas R. Zeros of the periodic Hurwitz zeta-function// Siauliai Math. Semin. 2013. V. 8(16). P. 49–62. ˇ
3. Gonek S. M. Analytic properties of zeta and L-functions. Ph. D. Thesis. University of Michigan, 1979.
4. Javtokas A., Laurinˇcikas A. Universality of the periodic Hurwitz zeta-function// Integral Transforms Spec. Funct. 2006. V. 17, No. 10. P. 711–722.
5. Kaczorowski J. Some remarks on the universality of periodic L-functions// New Directions in Value-Distribution Theory of Zeta and L-functions/ R. Steuding, J. Steuding (Eds) - Aachen: Shaker Verlaag. 2009. P. 113–120.
6. Kaˇcinskait˙e R., Laurinˇcikas A. The joint distribution of periodic zeta-functions// Studia Sci. Math. Hungarica. 2011. V. 48, No. 2. P. 257–279.
7. Korsakien˙e D., Poceviˇcien˙e V., Siauˇci¯unas D. On universality of periodic zeta- ˇ functions// Siauliai Math. Semin. 2013. V. 8(16). P. 131–141. ˇ
8. Laurinˇcikas A. Limit Theorems for the Riemann Zeta-Function. Dordrecht, Boston, London: Kluwer Academic Publishers, 1996.
9. Laurinˇcikas A. On joint universality of Dirichlet L-functions// Chebyshevskii Sb. 2011. V. 12, No. 1. P. 129–139.
10. Laurinˇcikas A., Garunkˇstis R. The Lerch zeta-function. Dordrecht, Boston, London: Kluwer Academic Publishers, 2002.
11. Laurinˇcikas A., Macaitien˙e R., Mokhov D., Siauˇci¯unas D. On universality of ˇ certain zeta-functions// Izv. Sarat. u-ta. Nov. ser. Ser. Matem. Mekhan. Inform. 2013. V. 13, No. 4. P. 67–72.
12. Laurinˇcikas A., Matsumoto K. The universality of zeta-functions attached to certain cusp forms// Acta Arith. 2001. V. 98, No. 4. P. 345–359.
13. Laurinˇcikas A., Matsumoto K., Steuding J. The universality of L-functions associated with newforms// Izv. Math. 2003. V. 67, No. 1. P. 77–90.
14. Laurinˇcikas A., Siauˇci¯unas D. Remarks on the universality of periodic zet ˇ afunction// Math. Notes. 2006. V. 80, No. 3-4. P. 711–722. 130
15. Laurinˇcikas A., Siauˇci¯unas D. On zeros of periodic zeta-functions// Ukra ˇ inian Math. J. 2013. V. 65, No. 6. P. 953–958.
16. Nagoshi H., Steuding J. Universality for L-functions in the Selberg class// Lith. Math. J. 2010. V. 50, No. 3. P. 293–311.
17. Привалов И. И. Введение в теорию функций комплексного переменного. М.: Наука, 1967.
18. Steuding J. On Dirichlet series with periodic coefficients// Ramanujan J. 2002. V. 6. P. 295–306.
19. Steuding J. Universality in the Selberg class// Special Activity in Analytic Number Theory and Diophantine Equations, Proc. Workshop at the Max PlankInstitute Bonn 2003/ D. R. Heath-Brown, B. Moroz (Eds) - Bonn: Bonner Math. Schiften. 2003. V. 360.
20. Steuding J. Value-Distribution of L-functions. Lecture Notes in Math. vol. 1877. Berlin, Heidelberg: Springer Verlag, 2007.
21. Воронин С. М. Теорема об "универсальности" дзета-функции Римана // Изв. АН СССР. Сер. Математика. 1975. Т. 39, №3. С. 475–486.
22. Voronin S. M. The functional independence of Dirichlet L-functions// Acta Arith. 1975. V. 27. P. 493–503.
Рецензия
Для цитирования:
Лауринчикас А., Стонцелис М., Шяучюнас Д. О НУЛЯХ НЕКОТОРЫХ ФУНКЦИЙ, СВЯЗАННЫХ С ПЕРИОДИЧЕСКИМИ ДЗЕТА-ФУНКЦИЯМИ. Чебышевский сборник. 2014;15(1):121-130. https://doi.org/10.22405/2226-8383-2014-15-1-121-130
For citation:
Laurinˇcikas A., Stoncelis M., Siauˇci¯unas D. ON THE ZEROS OF SOME FUNCTIONS RELATED TO PERIODIC ZETA-FUNCTIONS. Chebyshevskii Sbornik. 2014;15(1):121-130. (In Russ.) https://doi.org/10.22405/2226-8383-2014-15-1-121-130