Preview

Chebyshevskii Sbornik

Advanced search

A DISCRETE UNIVERSALITY THEOREM FOR PERIODIC HURWITZ ZETA-FUNCTIONS

https://doi.org/10.22405/2226-8383-2016-17-1-148-157

Abstract

In 1975, Sergei Mikhailovich Voronin discovered the universality of the Riemann zetafunction ζ(s), s = σ + it , on the approximation of a wide class of analytic functions by shifts ζ(s + iτ ), τ ∈ R. Later, it turned out that also some other zeta-functions are universal in the Voronin sense. If τ takes values from a certain descrete set, then the universality is called discrete. In the present paper, the discrete universality of periodic Hurwitz zeta-functions is considered. The periodic Hurwitz zeta-function ζ(s, α; a) is defined by the series with terms am(m + α)−s, where 0 < α ≤ 1 is a fixed number, and a = {am} is a periodic sequence of complex numbers. It is proved that a wide class of analytic functions can be approximated by 
shifts ζ(s+ihkβ1 logβ2 k, α; a) with k = 2, 3, ..., where h > 0 and 0 < β1 < 1, β2 > 0 are fixed numbers, and the set {log(m+α) : m = 0, 1, 2} is linearly independent over the field of rational numbers. It is obtained that the set of such k has a positive lower density. For the proof, properties of uniformly distributed modulo 1 sequences of real numbers are applied.

About the Authors

A. Laurinˇcikas
Vilnius University
Russian Federation

dr. phys.-matem. sc., professor, full member of the Lithuanian AS, head of the Department of Probability theory and Number Theory of the Faculty of Mathematics and Informatics



D. Mochov
Vilnius University
Russian Federation

doctoral student of the Department of Probability theory and Number Theory of the Faculty of Mathematics and Informatics



References

1. Billingsley P., 1968, "Convergence of Probability Measures" , New York: Wiley.

2. Javtokas A., Laurinˇcikas A., 2006, "On the periodic Hurwitz zeta-fucntion" , Hardy-Ramanujan J. Vol. 29. P. 18-36.

3. Javtokas A., Laurinˇcikas A., 2006, "Universality of the periodic Hurwitz zeta-function" , Integral Transforms Spec. Funct. Vol. 17, No. 10. P. 711-722

4. Heyer H.,1977, "Probability Measures on Locally Compact Groups" , Berlin, Heidelberg, New York: Springer-Verlag.

5. Kuipers L., Niederreiter H., 1974, "Uniform Distribution of Sequences" , Pure and Applied Mathematics. New York, London, Sydney: Wiley-Interscience.

6. Karatsuba A.A., Voronin S.M., 1992, "The Riemann zeta-function" , Berlin: Walter de Gruyter.

7. Laurinˇcikas A., 2006, "The joint universality for periodic Hurwitz zeta-functions" , Analysis (Munich) Vol. 26, No. 3. P. 419–428.

8. Laurinˇcikas A., 1996, "Limit theorems for Riemann zeta-function" , Dordrecht, Boston, London: Kluwer.

9. Laurinˇcikas A., Garunkˇstis R., 2002, "The Lerch zeta-function" , Dordrecht, Boston, London: Kluwer.

10. Laurinˇcikas A., Macaitien˙e R., 2009, "The discrete universality of the periodic Hurwitz zetafunction" , Integral Transforms Spec. Funct. Vol. 20. P. 673-686.

11. Laurinˇcikas A., Macaitien˙e R., Mochov D., ˇSiauˇci¯unas D., 2013, "On universality of certain zeta-functions" , Izv. Saratov. univ., ser. Matem., Mekhan. Inform. P. 67-72.

12. Mergelyan S. N., 1952, "Uniform approximations to functions of a complex variable" , Usp. Matem. Nauk. Vol. 7, No. 2. P. 31–122 (Russian) ≡ Amer. Math. Trans. 1954. Vol. 101.

13. Minceviˇc A., Mochov D.,2015, "On the discrete universality of the periodic Hurwitz zetafunction" , ˇSiauliai Math. Semin. Vol. 10. P. 81-89.

14. Montgomery H. L., 1971, "Topics in Multiplicative Number Theory." , Lecture Notes in Math. Vol. 227. Berlin: Springer.

15. Voronin S. M., 1975, "Theorem on the "universality" of the Riemann zeta-function." , Izv. Akad. Nauk SSSR. Vol. 39. P. 475–486 (in Russian) ≡ Math. USSR Izv. 1975. Vol. 9. P. 443–453.


Review

For citations:


Laurinˇcikas A., Mochov D. A DISCRETE UNIVERSALITY THEOREM FOR PERIODIC HURWITZ ZETA-FUNCTIONS. Chebyshevskii Sbornik. 2016;17(1):148-157. https://doi.org/10.22405/2226-8383-2016-17-1-148-157

Views: 496


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)