Preview

Chebyshevskii Sbornik

Advanced search

About one functional equation

https://doi.org/10.22405/2226-8383-2021-22-5-359-364

Abstract

The hyperbolic zeta function of a two-dimensional lattice of Dirichlet approximations is studied. A functional equation is found for the hyperbolic zeta function of a two-dimensional
lattice of Dirichlet approximations in the case of rational 𝛽, which sets an analytical continuation on the entire complex plane, except for the point 𝛼 = 1, in which the pole is of the first order.
The found functional equation allows us to raise the question of continuity for the hyperbolic zeta function of a two-dimensional lattice of Dirichlet approximations in the case of rational 𝛽.

About the Authors

Михаил Добровольский
Геофизический центр РАН
Russian Federation

Dobrovol’skii Mikhail Nikolaevich — candidate of candidate of physical and mathematical
sciences, Geophysical centre of RAS (Moscow).
e-mail: m.dobrovolsky@gcras.ru



Nikolai Nikolaevich Dobrovol’skii
Tula State Lev Tolstoy Pedagogical University; Tula State University
Russian Federation

candidate of physical and mathematical sciences, associate
professor



Nikolai Mikhailovich Dobrovol’skii
Tula State Lev Tolstoy Pedagogical University
Russian Federation

doctor of physical and mathematical sciences, professor



References

1. Dobrovol’skaya, L. P., Dobrovol’skii, M. N., Dobrovol’skii, N. M. & Dobrovol’skii, N. N. 2012, “The hyperbolic Zeta function of grids and lattices, and calculation of optimal coefficients”,

2. Chebyshevskij sbornik, vol. 13, no. 4(44), pp. 4–107.

3. Dobrovol’skii, M. N. 2006, “Dirichlet series with periodic coefficients and a functional equation for hyperbolic dzeta-function of integer lattices”, Chebyshevskij sbornik, vol. 3, no. 2(4), pp. 43–59.

4. Dobrovol’skii, M. N. 2007, “Functional equation for hyperbolic dzeta-function of integer lattices”, Doklady akademii nauk, vol. 412, no. 3, pp. 302–304.

5. Dobrovol’skii, M. N. 2007, “Functional equation for hyperbolic dzeta-function of integer lattices”, Vestnik Moskovskogo gosudarstvennogo universiteta. Seriya 1: Matematika. Mekhanika, no. 3, pp. 18–23.

6. Dobrovol’skii, N. M., Dobrovol’skii, N. N., Sobolev, D.K., Soboleva, V.N., Dobrovol’skaya, L. P. & Bocharova, O. E. 2016, “On the hyperbolic Hurwitz Zeta function ”, Chebyshevskij sbornik,

7. vol. 17, no. 3, pp. 72–105.ский, В. Н. Соболева, Д. К. Соболев, Л. П. Добровольская, О. Е. Бочарова О гиперболической дзета-функции Гурвица // Чебышевский сб., 2016. Т. 17, вып. 3. С. 72–105.

8. Dobrovol’skaya, L. P., Dobrovol’skii, M. N., Dobrovol’skii, N. M. & Dobrovol’skii, N. N. 2014, “On Hyperbolic Zeta Function of Lattices”, Continuous and Distributed Systems. Solid Mechanics and Its Applications, vol. 211, pp. 23–62. doi: 10.1007/978-3-319-03146-0_2.


Review

For citations:


 , Dobrovol’skii N.N., Dobrovol’skii N.M. About one functional equation. Chebyshevskii Sbornik. 2021;22(5):359-364. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-5-359-364

Views: 302


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)