Preview

Chebyshevskii Sbornik

Advanced search

Generalized Rauzy tilings and linear recurrence sequences

https://doi.org/10.22405/2226-8383-2021-22-2-313-333

Abstract

Rauzy introduced a fractal set associated with the two-dimensional toric shift by the vector (𝛽−1, 𝛽−2), where 𝛽 is the real root of the equation 𝛽3 = 𝛽2 + 𝛽 + 1 and showed that this
fractal is divided into three fractals that are bounded remainder sets with respect to a given toric shift. The introduced set was named as Rauzy fractal. It obtains many applications in the
combinatorics of words, geometry, theory of dynamical systems and number theory. Later, an infinite sequence of tilings of 𝑑 − 1-dimensional Rauzy fractals associated with algebraic Pisot units of the degree 𝑑 into fractal sets of 𝑑 types were introduced. Each subsequent tiling is a subdivision of the previous one. These tilings are closely related to some irrational toric shifts and allowed to obtain new examples of bounded remainder sets for these shifts, and also to get some results on self-similarity of shift orbits.
In this paper, we continue the study of generalized Rauzy tilings related to Pisot numbers. A new approach to definition of Rauzy fractals and Rauzy tilings based on expansions of natural
numbers on linear recurrence sequences is proposed. This allows to improve the results on the connection of Rauzy tilings and bounded remainder sets and to show that the corresponding
estimate of the remainder term is independent on the tiling order. The geometrization theorem for linear recurrence sequences is proved. It states that the natural number has a given endpoint of the greedy expansion on the linear recurrence sequence if and only if the corresponding point of the orbit of toric shift belongs to some set, which is the union of the tiles of the Rauzy tiling. Some number-theoretic applications of this result is obtained.
In conclusion, some open problems related to generalized Rauzy tilings are formulated.

About the Author

Anton Vladimirovich Shutov
Khabarovsk Division of the Institute for Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences
Russian Federation

candidate of physical and mathematical sciences



References

1. Rauzy, G. 1982, “Nombres alge′briques et substitutions“, Bull. Soc. Math. France, vol. 110, pp. 147–178.

2. Pytheas Fogg, N. 2001, Substitutions in dynamics, aritheoremetics and combinatorics, Springer.

3. Combinatorics, Automata and Number Theory 2010, Edited by V. Berthe & M. Rigo. Cambridge University Press.

4. Siegel, A. & Thuswaldner, J. 2009, “Topological properties of Rauzy fractals“, Memoires de la SMF, vol. 118.

5. Shutov, A. V. & Maleev A. V. 2012, “Generalized Rauzy fractals and quasiperiodic tilings“, Classification and Application of Fractals: New Reserch, Nova Publishers, pp. 55–111.

6. Zhuravlev, V. G. 2006, “Rauzy tilings and bounded remainder sets on the torus“, Journal of Mathematical Sciences, vol. 137, no 2, pp. 4658–4672. doi:10.1007/s10958-006-0262-z.

7. Shutov, AV. 2018. “Generalized Rauzy tilings and bounded remainder sets“, Chebyshevskii Sbornik, vol 20, no. 3, pp 372–389. doi:10.22405/2226-8383-2018-20-3-372-389

8. Thurston, W.P. 1989, “Groups, Tilings, and Finite State Automata“, Am. Math. Soc., Colloq. Lect., Providence, RI: Am. Math. Soc.

9. Akiyama, S. 1999, “Self affine tiling and Pisot numeration system“, Number Theory and its Applications, Kluwer, Kanemitsu, pp. 7–17.

10. Akiyama, S., Barat, G., Berthe, V. & Siegel, A. 2008, “Boundary of central tiles associated with Pisot beta-numeration and purely periodic expansions“, Monatshefte fur Mathematik, vol. 155, no. 3, pp. 377–419. doi:10.1007/s00605-008-0009-7.

11. Akiyama, S. 2002, “On the boundary of self-affine tilings generated by Pisot numbers“, Journal of Math. Soc. Japan, vol. 54, no. 2, pp. 283–308. doi:10.2969/jmsj/05420283.

12. Akiyama, S. 2007, “Pisot number system and its dual tiling“, Physics and Theoretical Computer Science, IOS Press, pp. 133–154.

13. Berthe, V. & Siegel A. 2005, “Tilings associated with beta-numeration and substitution“, Integers: Electronic journal of combinatorial number theory, vol. 5, no. 3, ♯A02.

14. Hubert, P. & Messaoudi, A. 2006, “Best simultaneous diophantine approximation of Pisot numbers and Rauzy fractals“, Acta Arithmetica, vol. 124, no. 1, pp. 1—15. doi:10.4064/aa124- 1-1.

15. Frougny, C. & Solomyak, B. 1992, “Finite beta-expansions“, Ergodic Theory and Dynamical Systems, vol. 12. no. 4, pp. 713-–723. doi:10.1017/S0143385700007057.

16. Parry, W. 1950, “On the 𝛽-expansions of real numbers“, Acta Math. Acad. Sci. Hungar., vol. 11, no. 3, pp. 401–416. doi:10.1007/BF02020954.

17. Renyi, A. 1957, “Representations for real numbers and their ergodic properties“, Acta Math. Acad. Sci. Hungar., vol. 8, no.3, pp. 477–493. doi:10.1007/BF02020331.

18. Hecke, E. 1921, “Eber Analytische Funktionen und die Verteilung van Zahlen mod Eins“, Math.Sem.Hamburg Univ., vol. 5, pp. 54–76. doi: 10.1007/BF02940580.

19. Grepstad, S. & Lev, N. 2015, “Sets of bounded discrepancy for multi-dimensional irrational rotation“, Geometric and Functional Analysis, vol. 25, no 1, pp. 87–133. doi:10.1007/s00039-015-0313-z.

20. Zhuravlev, V. G. 2017, “Bounded ramainder sets“, Journal of Mathematical Sciences, vol. 222, pp. 585-–640. doi:0.1007/s10958-017-3322-7.

21. Shutov, A. V. 2018, “Substitutions and bounded remainder sets“, Chebyshevskii Sbornik, vol. 19, no. 2, pp. 499-520. doi:10.22405/2226-8383-2018-19-2-499-520.

22. Zhuravlev, V. G. 2009, “Fibonacci-even numbers: Binary additive problem, distribution over progressions, and spectrum“, St. Petersburg Mathematical Journal, vol. 20, no 3, pp. 18–46.

23. doi;10.1090/S1061-0022-09-01051-6.

24. Davlet’yarova, E.P., Zhukova, A. A. & Shutov, A. V. 2013, “Geometrization of the Fibonacci numeration system, with applications to number theory“, St. Petersburg Mathematical Journal, vol. 25, no. 6., pp. 1–23. doi:10.1090/S1061-0022-2014-01321-0.

25. Davlet’yarova, E.P., Zhukova, A. A. & Shutov, A. V. 2016, “Geometrization of the generalized Fibonacci numeration system with applications to number theory“, Chebyshevskii Sbornik, vol.

26. , no. 2, pp. 88–112. doi:10.22405/2226-8383-2016-17-2-88-112.

27. Akiyama, S. & Gjini, N. 2005, “Connectedness of number theoretic tilings“ Discrete Mathematics and Theoretical Computer Science, vol. 7, no. 1, pp, 269–312.

28. Weyl, H. 1916, “ ¨Ueber die Gleichverteilung von Zahlen mod. Eins“, Math. Ann., vol. 7, no. 3, pp. 313-–352. doi:10.1007/BF01475864.

29. Vinogradow, I. M. “Some theorems concerning the theory of primes‘, Rec. Math. [Mat. Sbornik] N.S., vol. 44, no. 2, pp. 179-–195.

30. Shutov, А. В. 2019, “Rauzy fractals and their number-theoretic applications“, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., vol 166, pp. 110-–119. doi:10.36535/0233-6723-2019-166-110-119.

31. Dumont, J.-M. & Thomas, A. 1989, “Systemes de numeration et fonctions fractales relatifs aux substitutions“, Theoretical computer science, vol. 65, no. 2, pp. 153–169. doi:10.1016/0304-3975(89)90041-8.

32. Zhukova, A. A. & Shutov, A. V. 2017, “Geometrization of numeration systems“, Chebyshevskii Sbornik, vol. 18, no. 4, pp. 222—245. doi:10.22405/2226-8383-2017-18-4-221-244.

33. Ito, S. & Ohtsuki, M. 1993, “Modified Jacobi-Perron Algorithm and Generating Markov Partitions for Special Hyperbolic Toral Automorphisms“, Tokio Journal Mathematics, vol. 16, no. 2, pp. 441-472. doi:10.3836/tjm/1270128497.

34. Berthe, V., Bourdon, J., Jolivet, T. & Siegel, A. 2016, “A combinatorial approach to products of Pisot substitutions“, Ergodic Theory and Dynamical Systems vol. 36, no. 6, pp. 1757–1794. doi:10.1017/etds.2014.141.


Review

For citations:


Shutov A.V. Generalized Rauzy tilings and linear recurrence sequences. Chebyshevskii Sbornik. 2021;22(2):313-333. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-2-313-333

Views: 402


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)