Preview

Chebyshevskii Sbornik

Advanced search

On Gelfond-type problem for generalized Zeckendorf representations

https://doi.org/10.22405/2226-8383-2021-22-2-104-120

Abstract

Gelfond proved that for coprime 𝑏 − 1 and 𝑑 sums of digits of 𝑏-ary expressions of natural numbers are uniformly distributed on arithmetic progressions with the common difference 𝑑.
Later, similar result was proved for the representations of natural numbers based on linear recurrent sequences.
We consider the remainder term of the corresponding asymptotic formula and study the dichotomy between the logarithmic and power estimates of the remainder term. In the case 𝑑 = 2, we obtain some sufficient condition for the validity of the logarithmic estimate. Using them, we show that the logarithmic estimate holds for expansions based on all second-order linear recurrenct sequences and on infinite family of third-order sequences. Also we construct an example of the linear reccurent sequence of an arbitrary order with such property. On the other hand, we give an example of a third-order linear recurrent sequence for which the logarithmic estimate does not hold. We also show that for 𝑑 = 3 the logarithmic estimate does not hold even in the simplest case of the expansions based on Fibonacci numbers.
In addition, we consider the representations of natural numbers based on the denominators of partial convergents of the continued fraction expansions of irrational numbers. In this case,
we prove the uniformity of the distribution of sums of digits over arithmetic progressions with the common difference 2 with the logarithmic remainder term.

About the Authors

Alla Adolfovna Zhukova
Russian Academy of National Economy and Public Administration under the President of Russian Federation, Vladimir branch
Russian Federation

candidate of physical and mathematical sciences, associate professor



Anton Vladimirovich Shutov
Vladimir State University named after Alexander and Nicholay Stoletovs
Russian Federation

candidate of physical and mathematical sciences



References

1. Dumont, J.-M. & Thomas, A. 1989, “Systemes de numeration et fonctions fractales relatifs aux substitutions“, Theoretical computer science, vol. 65, no. 2, pp. 153-169. doi: 10.1016/0304-3975(89)90041-8.

2. Dumont, J.-M. & Thomas, A. 1997, “Gaussian asymptotic properties of the sum-of-digits function“, J. Number Theory, vol. 62, pp. 19–38. doi: 10.1006/jnth.1997.2044.

3. Gelfond, A. O. 1968, “Sur les nombres qui ont des propri´et´es additives et multiplicatives donn´ees“, Acta Aithmetica, vol. 13, pp. 259-265. doi: 10.4064/aa-13-3-259-265.

4. Zeckendorf, E. 1972, “Representation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas“, Bull. Soc. R. Sci. Liege, vol. 41, pp. 179-182.

5. Drmota, M. & Ska lba, M. 2000, “The Parity of the Zeckendorf Sum-of-Digits-Function“, Manuscripta mathematica, vol. 101, pp. 361–383. doi: 10.1007/s002290050221.

6. Drmota, M. & Gajdosik J. 1998, “The Parity of the Sum-of-Digits-Function of Generalized Zeckendorf Representations“, Fibonacci Quarterly, vol. 36, no. 1, pp. 3-19.

7. Khinchin, A.Ya. 1936, “Zur metrischen Kettenbruchtheorie“, Compositio Matlzematica, vol. 3, no. 2, pp. 275–285.

8. Lamberger, M. & Thuswaldner, J. W. 2003, “Distribution properties of digital expansions arising from linear recurrences“, Mathematica Slovaca, vol. 53, no. 1, pp. 1-20.

9. Madritsch, M. G. & Thuswaldner, J. M. 2019, “The level of distribution of the sum-of-digits function of linear recurrence number systems“, Cornell University, arxiv. 1909.08499.

10. Mauduit, C. & Rivat, J. 2010, “Sur un probl`eme de Gelfond: la somme des chiffres des nombres premiers“, Annals of Mathematics, vol. 171, no. 3, pp. 1591–1646.

11. Ostrowski, V. A. 1922, “Bemerkungen zur Theorie der diophantischen Approximationen“, Abh. Math. Semin. Hamburg Univ., vol. 1, pp. 77-98. doi: 10.1007/BF02940581.

12. Parry, W. 1960, “On the 𝛽-expansion of real numbers“, Acta Math. Acad. Sci. Hung., vol. 11, pp. 401-416. doi: 10.1007/BF02020954.

13. Shutov, A. V. 2020, “On sum of digits of the Zeckendorf representations of two consecutive numbers“, Fibonacci quarterly (accepted).

14. Karatsubaa, A. A. & Novak, B. 1999, “Arithmetical problems with numbers of special type“, Mathematical Notes, vol. 66, no. 2, pp. 251–253. doi: 10.1007/FBF02674886.

15. Naumenko, A.P. 2011, “On the number of solutions of some Diophantine equations in positive integers with given properties of binary expansions“, Chebyshevskii Sb., vol. 12, no. 1, pp.

16. –157.

17. Stanley, R. 1986, “Enumerative combinatorics“, vol. 1, Monterey: Wadsworrth.

18. Eminyan, K. M. 1996, “A binary problem“, Mathematical Notes, vol. 60, no. 4, pp. 478–481. doi: 10.1007/FBF02305438.

19. Eminyan, K. M. 1995, “On the representation of numbers with given properties of binary expansion by sums of two squares“, Proc. Steklov Inst. Math., vol. 207, pp. 347–351.

20. Eminyan, K. M. 2011, “On the Mean Values of the Function 𝜏𝑘(𝑛) in Sequences of Natural Numbers“, Mathematical Notes, vol. 90, no. 3, pp. 439–447. doi: 10.1134/FS0001434611090124.


Review

For citations:


Zhukova A.A., Shutov A.V. On Gelfond-type problem for generalized Zeckendorf representations. Chebyshevskii Sbornik. 2021;22(2):104-120. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-2-104-120

Views: 334


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)