A remark on a product of two formational tcc-subgroups
https://doi.org/10.22405/2226-8383-2021-22-1-495-501
Abstract
A subgroup 𝐴 of a group 𝐺 is called tcc-subgroup in 𝐺, if there is a subgroup 𝑇 of 𝐺 such that 𝐺 = 𝐴𝑇 and for any 𝑋 6 𝐴 and 𝑌 6 𝑇 there exists an element 𝑢 ∈ ⟨𝑋, 𝑌 ⟩ such that 𝑋𝑌 𝑢 ≤ 𝐺. The notation 𝐻 6 𝐺 means that 𝐻 is a subgroup of a group 𝐺. In this paper we consider a group 𝐺 = 𝐴𝐵 such that 𝐴 and 𝐵 are tcc-subgroups in 𝐺. We prove that 𝐺 belongs to F, when 𝐴 and 𝐵 belong to F and F is a saturated formation such that U ⊆ F. Here U is the formation of all supersoluble groups.
About the Author
Alexander Alexandrovich TrofimukBelarus
candidate of physical and mathematical sciences
References
1. Huppert, B. 1967, Endliche Gruppen I, Springer, Berlin-Heidelberg-New York.
2. Monakhov, V. S. 2006, Introduction to the Theory of Final Groups and Their Classes [in Russian], Vysh. Shkola, Minsk.
3. Asaad, M. & Shaalan, A. 1989, “On the supersolubility of finite groups“, Arch. Math., vol. 53, pp. 318-326.
4. Maier, R. 1992, “A completeness property of certain formations“, Bull. Lond. Math. Soc., vol. 24, pp. 540-544.
5. Ballester-Bolinches, A. & Perez-Ramos, M. D. 1996, “A question of R. Maier concerning formations“, J. Algebra, vol. 182, pp. 738-747.
6. Guo, W., Shum, K.P. & Skiba, A.N. 2006, “Criterions of supersolubility for products of supersoluble groups“, Publ. Math. Debrecen, vol. 68, no. 3-4, pp. 433-449.
7. Arroyo-Jorda, M. & Arroyo-Jorda, P. 2017, “Conditional permutability of subgroups and certain classes of groups“, Journal of Algebra, vol. 476, pp. 395-414.
8. Trofimuk, A.A. 2021, “On the supersolubility of a group with some tcc-subgroups“, Journal of Algebra and Its Applications, 2150020 (18 pages).
9. Ballester-Bolinches, A., Esteban-Romero, R. & Asaad, M. 2010, Products of finite groups, Walter de Gruyter, Berlin.
10. Trofimuk, A. A. 2020, “On a product of two formational tcc-subgroups“, Algebra and Discrete Mathematics, vol. 30, no. 2, pp. 282-289.
11. Ballester-Bolinches, A. & Ezquerro, L. M. 2006, Classes of Finite Groups, Springer, Dordrecht.
12. Doerk, K. & Hawkes, T. 1992, Finite soluble groups, Walter de Gruyter, Berlin-New York.
13. Arroyo-Jorda, M., Arroyo-Jorda, P., Martinez-Pastor, A. & Perez-Ramos, M. D. 2014, “On conditional permutability and factorized groups“, Annali di Matematica Pura ed Applicata, vol.
14. , pp. 1123-1138.
15. Skiba, A. N. 2007, “On weakly s-permutable subgroups of finite groups“, J. Algebra, vol. 315, pp. 192-209.
16. Groups, Algorithms, and Programming (GAP), Version 4.11.0. (2020). Available at http:// www.gap-system.org (accessed 22 september 2020).
Review
For citations:
Trofimuk A.A. A remark on a product of two formational tcc-subgroups. Chebyshevskii Sbornik. 2021;22(1):495-501. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-1-495-501