Preview

Chebyshevskii Sbornik

Advanced search

Endomorphisms of semicyclic ๐‘›-groups

https://doi.org/10.22405/2226-8383-2021-22-1-353-369

Abstract

are isomorphic to (๐‘›, 2)-nearrings of endomorphisms of certain semiabelian ๐‘›-groups. Such almost (๐‘›, 2)-nearrings are found for semicyclic ๐‘›-groups.
On the additive group of integers ๐‘ we construct an abelian ๐‘›-group โŸจ๐‘, ๐‘“1โŸฉ with ๐‘›- ary operation ๐‘“1(๐‘ง1, . . . , ๐‘ง๐‘›) = ๐‘ง1 + . . . + ๐‘ง๐‘› + ๐‘™, where ๐‘™ is any integer. For a nonidentical automorphism ๐œ™(๐‘ง) = โˆ’๐‘ง on ๐‘, we can specify semiabelian ๐‘›-group โŸจ๐‘, ๐‘“2โŸฉ for ๐‘› = 2๐‘˜ + 1, ๐‘˜ โˆˆ ๐‘, with the ๐‘›-ary operation ๐‘“2(๐‘ง1, . . . , ๐‘ง๐‘›) = ๐‘ง1 โˆ’ ๐‘ง2 + . . . + ๐‘ง2๐‘˜โˆ’1 โˆ’ ๐‘ง2๐‘˜ + ๐‘ง2๐‘˜+1. Any infinite semicyclic ๐‘›-group is isomorphic to either the ๐‘›-group โŸจ๐‘, ๐‘“1โŸฉ, where 0 โ‰ค ๐‘™ โ‰ค [๐‘›โˆ’1
2 ], or the ๐‘›-group โŸจ๐‘, ๐‘“2โŸฉ for odd ๐‘›. In the first case we will say that such ๐‘›-group has type (โˆž, 1, ๐‘™), and in the second case, it has type (โˆž,โˆ’1, 0).
In ๐‘ we select the set ๐‘ƒ = {๐‘š|๐‘š๐‘™ โ‰ก ๐‘™ (mod ๐‘› โˆ’ 1)} and define an ๐‘›-ary operation โ„Ž by the rule โ„Ž(๐‘š1, . . . ,๐‘š๐‘›) = ๐‘š1 + . . . + ๐‘š๐‘› on this set. Then the algebra โŸจ๐‘ƒ, โ„Ž, ยทโŸฉ, where ยท is the multiplication of integers, is a (๐‘›, 2)-ring. It is proved that โŸจ๐‘ƒ, โ„Ž, ยทโŸฉ is isomorphic to (๐‘›, 2)-ring of endomorphisms of semicyclic ๐‘›-group of type (โˆž, 1, ๐‘™).

In the ๐‘›-group โŸจ๐‘ ร— ๐‘, โ„ŽโŸฉ = โŸจ๐‘, ๐‘“2โŸฉ ร— โŸจ๐‘, ๐‘“2โŸฉ we define the binary operation โ—‡ by the rule (๐‘š1, ๐‘ข1) โ—‡ (๐‘š2, ๐‘ข2) = (๐‘š1๐‘š2,๐‘š1๐‘ข2 +๐‘ข1). Then โŸจ๐‘ ร—๐‘, โ„Ž, โ—‡โŸฉ is an (๐‘›, 2)-nearringsg. It is proved that โŸจ๐‘ ร—๐‘, โ„Ž, โ—‡โŸฉ is isomorphic to (๐‘›, 2)-nearrings of endomorphisms of a semicyclic ๐‘›-group of type (โˆž,โˆ’1, 0).
It is proved that (๐‘›, 2)-ring โŸจ๐‘, ๐‘“, *โŸฉ, where ๐‘“(๐‘ง1, . . . , ๐‘ง๐‘›) = ๐‘ง1 + . . . + ๐‘ง๐‘› + 1 and ๐‘ง1 * ๐‘ง2 = ๐‘ง1๐‘ง2(๐‘› โˆ’ 1) + ๐‘ง1 + ๐‘ง2, is isomorphic to (๐‘›, 2)-rings of endomorphisms of infinite cyclic ๐‘›-group.
On additive group of the ring of residue classes of ๐‘๐‘˜ we define ๐‘›-group โŸจ๐‘๐‘˜, ๐‘“3โŸฉ, where the ๐‘›- ary operation ๐‘“3 operates according to the rule ๐‘“3(๐‘ง1, . . . , ๐‘ง๐‘›) = ๐‘ง1+๐‘š๐‘ง2+. . .+๐‘š๐‘›โˆ’2๐‘ง๐‘›โˆ’1+๐‘ง๐‘›+๐‘™, 1 โ‰ค ๐‘š < ๐‘˜ and ๐‘š is relatively prime to ๐‘˜. In addition, ๐‘š satisfies the congruence ๐‘™๐‘š โ‰ก ๐‘™ (mod ๐‘˜) and multiplicative order of ๐‘š modulo ๐‘˜ divides ๐‘› โˆ’ 1. Any finite semicyclic ๐‘›-group of order ๐‘˜
is isomorphic to ๐‘›-group โŸจ๐‘๐‘˜, ๐‘“3โŸฉ, where ๐‘™ | gcd(๐‘› โˆ’ 1, ๐‘˜) for ๐‘š = 1 and ๐‘™ | gcd(๐‘š๐‘›โˆ’1โˆ’1 ๐‘šโˆ’1 , ๐‘˜) for ๐‘š ฬธ= 1. We will say that such ๐‘›-group has type (๐‘˜, ๐‘š, ๐‘™).

In the ๐‘›-group โŸจ๐‘ƒ, โ„ŽโŸฉ = โŸจ๐‘๐‘˜, ๐‘“3โŸฉ ร— โŸจ๐‘๐‘™, ๐‘“4โŸฉ, ๐‘“4(๐‘ง1, . . . , ๐‘ง๐‘›) = ๐‘ง1 + ๐‘Ÿ๐‘ง2 + . . . + ๐‘Ÿ๐‘›โˆ’2๐‘ง๐‘›โˆ’1 + ๐‘ง๐‘›, where ๐‘Ÿ is the remainder of dividing ๐‘š by ๐‘™, we define the binary operation โ—‡ by the rule

$$(๐‘ข1, ๐‘ฃ1) โ—‡ (๐‘ข2, ๐‘ฃ2) = (๐‘ข2๐‘ 1 + ๐‘ข1, ๐‘ฃ2๐‘ 1 + ๐‘ฃ1)$$

where ๐‘ 1 โˆˆ ๐‘๐‘˜, (๐‘ 1 โˆ’ 1 = ๐‘ 0 + ๐‘ฃ1)/๐‘˜
๐‘™ , and ๐‘ 0 is solution of congruence ๐‘ฅ โ‰ก (๐‘›โˆ’1)๐‘ข1
๐‘™ (mod ๐‘˜/๐‘™ ) for ๐‘š = 1 and ๐‘ฅ โ‰ก ๐‘š๐‘›โˆ’1โˆ’1 ๐‘šโˆ’1 ๐‘ข1 ๐‘™ (mod ๐‘˜/๐‘™ ) for ๐‘š ฬธ= 1. It is proved that the algebra โŸจ๐‘ƒ, โ„Ž, โ—‡โŸฉ is (๐‘›, 2)-ring for ๐‘š = 1 and (๐‘›, 2)-nearring for ๐‘š ฬธ= 1, which is isomorphic to (๐‘›, 2)-ring of endomorphisms of abelian semicyclic ๐‘›-group of type (๐‘˜, 1, ๐‘™) with ๐‘š = 1 and (๐‘›, 2)-nearring of endomorphisms of semicyclic ๐‘›-groups of type (๐‘˜, ๐‘š, ๐‘™) for ๐‘š ฬธ= 1.
It is proved that (๐‘›, 2)-ring โŸจ๐‘๐‘˜, ๐‘“, *โŸฉ, where ๐‘“(๐‘ง1, ๐‘™๐‘‘๐‘œ๐‘ก๐‘ , ๐‘ง๐‘›) = ๐‘ง1 + ๐‘™๐‘‘๐‘œ๐‘ก๐‘  + ๐‘ง๐‘› + 1 and ๐‘ข1 *๐‘ข2 = ๐‘ข1 ๐‘๐‘‘๐‘œ๐‘ก๐‘ข2 ๐‘๐‘‘๐‘œ๐‘ก(๐‘›โˆ’1)+๐‘ข1+๐‘ข2, is isomorphic to (๐‘›, 2)-ring of endomorphisms of finite cyclic ๐‘›-group of order ๐‘˜.

About the Author

Nikolay Alekseevich Shchuchkin
Volgograd State Socio-Pedagogical University
Russian Federation

candidate of physical and mathematical sciences



References

1. Aliev, I. S. 1966, โ€œOn minimal varieties of symmetric algebrasโ€, Algebra and Logic (seminar). 5, โ„–6. pp. 5-14. (In Russian)

2. Chakany, B. 1964, โ€œAbelian properties of primitive classes of universal algebrasโ€, Acta Scient. Math. , 25 : 3โ€“4 (1964) pp. 202โ€“208 (In Russian)

3. Glazek, K., Gleichgewicht, B. 1977, โ€œAbelian n-groupsโ€, Proc. Congr. Math. Soc. J. Bolyai Esztergom (Hungaru) 29 pp. 321-329.

4. Kurosh, A. G. 1974, โ€œGeneral algebra, Lections 1969-1970โ€, Nauka, Moscow, 158 pp. (In Russian)

5. Rusakov, S. F. 1992, โ€œAlgebraic ๐‘›-ary systemsโ€, Navuka i technika, Minsk, 264 pp. (In Russian)

6. Galโ€™mak, A. M. 2003, โ€œ๐‘›-Ary groupsโ€, Part I, Gomel university, Gomel, 195 pp. (In Russian)

7. Galโ€™mak, A. M. 2007, โ€œ๐‘›-Ary groupsโ€, Part 2, Publishing center of BSU, Minsk, 325 pp. (In Russian)

8. Crombez, G. 1972, โ€œOn (n,m)-ringsโ€, Abh. Math. Sem. Univ. 37, pp. 180-199.

9. Post, E. L. 1940, โ€œPolyadic groupsโ€, Trans. Amer. Math. Soc. 48, pp. 208-350.

10. Gluskin, L. M. 1965, โ€œPositional oerativesโ€, Math. collection, V.68 (110), No 3, pp. 444-472. (In Russian)

11. Hosszu, M. 1963, โ€œOn the explicit form of n-group operacionsโ€, Publ. Math. 10, pp. 88-92.

12. Shchuchkin, N.A. 2014, โ€œDirect product of ๐‘›-ary groupsโ€, Chebyshevโ€™s collection 15, Issue 2, pp. 101-121. (In Russian)

13. Glazek, K., Michalski, J., Sierockiะ, I. 1985, โ€œOn evaluation of some polyadic groupsโ€, Contributions to General Algebra 3, Proc. Conf., Vienna. pp. 159-171.

14. Khodabandeh, H., Shahryari, M. 2012, โ€œOn the representations and automorphisms of polyadic

15. groupsโ€, Commun. Algebra 40, pp. 2199-2212.

16. Shchuchkin, N.A. 2009, โ€œSemicyclic ๐‘›-ary groupsโ€, Izv. Gomel State Univ. 3(54), pp. 186-194. (In Russian)


Review

For citations:


Shchuchkin N.A. Endomorphisms of semicyclic ๐‘›-groups. Chebyshevskii Sbornik. 2021;22(1):353-369. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-1-353-369

Views: 325


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)