Endomorphisms of semicyclic ๐-groups
https://doi.org/10.22405/2226-8383-2021-22-1-353-369
Abstract
are isomorphic to (๐, 2)-nearrings of endomorphisms of certain semiabelian ๐-groups. Such almost (๐, 2)-nearrings are found for semicyclic ๐-groups.
On the additive group of integers ๐ we construct an abelian ๐-group โจ๐, ๐1โฉ with ๐- ary operation ๐1(๐ง1, . . . , ๐ง๐) = ๐ง1 + . . . + ๐ง๐ + ๐, where ๐ is any integer. For a nonidentical automorphism ๐(๐ง) = โ๐ง on ๐, we can specify semiabelian ๐-group โจ๐, ๐2โฉ for ๐ = 2๐ + 1, ๐ โ ๐, with the ๐-ary operation ๐2(๐ง1, . . . , ๐ง๐) = ๐ง1 โ ๐ง2 + . . . + ๐ง2๐โ1 โ ๐ง2๐ + ๐ง2๐+1. Any infinite semicyclic ๐-group is isomorphic to either the ๐-group โจ๐, ๐1โฉ, where 0 โค ๐ โค [๐โ1
2 ], or the ๐-group โจ๐, ๐2โฉ for odd ๐. In the first case we will say that such ๐-group has type (โ, 1, ๐), and in the second case, it has type (โ,โ1, 0).
In ๐ we select the set ๐ = {๐|๐๐ โก ๐ (mod ๐ โ 1)} and define an ๐-ary operation โ by the rule โ(๐1, . . . ,๐๐) = ๐1 + . . . + ๐๐ on this set. Then the algebra โจ๐, โ, ยทโฉ, where ยท is the multiplication of integers, is a (๐, 2)-ring. It is proved that โจ๐, โ, ยทโฉ is isomorphic to (๐, 2)-ring of endomorphisms of semicyclic ๐-group of type (โ, 1, ๐).
In the ๐-group โจ๐ ร ๐, โโฉ = โจ๐, ๐2โฉ ร โจ๐, ๐2โฉ we define the binary operation โ by the rule (๐1, ๐ข1) โ (๐2, ๐ข2) = (๐1๐2,๐1๐ข2 +๐ข1). Then โจ๐ ร๐, โ, โโฉ is an (๐, 2)-nearringsg. It is proved that โจ๐ ร๐, โ, โโฉ is isomorphic to (๐, 2)-nearrings of endomorphisms of a semicyclic ๐-group of type (โ,โ1, 0).
It is proved that (๐, 2)-ring โจ๐, ๐, *โฉ, where ๐(๐ง1, . . . , ๐ง๐) = ๐ง1 + . . . + ๐ง๐ + 1 and ๐ง1 * ๐ง2 = ๐ง1๐ง2(๐ โ 1) + ๐ง1 + ๐ง2, is isomorphic to (๐, 2)-rings of endomorphisms of infinite cyclic ๐-group.
On additive group of the ring of residue classes of ๐๐ we define ๐-group โจ๐๐, ๐3โฉ, where the ๐- ary operation ๐3 operates according to the rule ๐3(๐ง1, . . . , ๐ง๐) = ๐ง1+๐๐ง2+. . .+๐๐โ2๐ง๐โ1+๐ง๐+๐, 1 โค ๐ < ๐ and ๐ is relatively prime to ๐. In addition, ๐ satisfies the congruence ๐๐ โก ๐ (mod ๐) and multiplicative order of ๐ modulo ๐ divides ๐ โ 1. Any finite semicyclic ๐-group of order ๐
is isomorphic to ๐-group โจ๐๐, ๐3โฉ, where ๐ | gcd(๐ โ 1, ๐) for ๐ = 1 and ๐ | gcd(๐๐โ1โ1 ๐โ1 , ๐) for ๐ ฬธ= 1. We will say that such ๐-group has type (๐, ๐, ๐).
In the ๐-group โจ๐, โโฉ = โจ๐๐, ๐3โฉ ร โจ๐๐, ๐4โฉ, ๐4(๐ง1, . . . , ๐ง๐) = ๐ง1 + ๐๐ง2 + . . . + ๐๐โ2๐ง๐โ1 + ๐ง๐, where ๐ is the remainder of dividing ๐ by ๐, we define the binary operation โ by the rule
$$(๐ข1, ๐ฃ1) โ (๐ข2, ๐ฃ2) = (๐ข2๐ 1 + ๐ข1, ๐ฃ2๐ 1 + ๐ฃ1)$$
where ๐ 1 โ ๐๐, (๐ 1 โ 1 = ๐ 0 + ๐ฃ1)/๐
๐ , and ๐ 0 is solution of congruence ๐ฅ โก (๐โ1)๐ข1
๐ (mod ๐/๐ ) for ๐ = 1 and ๐ฅ โก ๐๐โ1โ1 ๐โ1 ๐ข1 ๐ (mod ๐/๐ ) for ๐ ฬธ= 1. It is proved that the algebra โจ๐, โ, โโฉ is (๐, 2)-ring for ๐ = 1 and (๐, 2)-nearring for ๐ ฬธ= 1, which is isomorphic to (๐, 2)-ring of endomorphisms of abelian semicyclic ๐-group of type (๐, 1, ๐) with ๐ = 1 and (๐, 2)-nearring of endomorphisms of semicyclic ๐-groups of type (๐, ๐, ๐) for ๐ ฬธ= 1.
It is proved that (๐, 2)-ring โจ๐๐, ๐, *โฉ, where ๐(๐ง1, ๐๐๐๐ก๐ , ๐ง๐) = ๐ง1 + ๐๐๐๐ก๐ + ๐ง๐ + 1 and ๐ข1 *๐ข2 = ๐ข1 ๐๐๐๐ก๐ข2 ๐๐๐๐ก(๐โ1)+๐ข1+๐ข2, is isomorphic to (๐, 2)-ring of endomorphisms of finite cyclic ๐-group of order ๐.
About the Author
Nikolay Alekseevich ShchuchkinRussian Federation
candidate of physical and mathematical sciences
References
1. Aliev, I. S. 1966, โOn minimal varieties of symmetric algebrasโ, Algebra and Logic (seminar). 5, โ6. pp. 5-14. (In Russian)
2. Chakany, B. 1964, โAbelian properties of primitive classes of universal algebrasโ, Acta Scient. Math. , 25 : 3โ4 (1964) pp. 202โ208 (In Russian)
3. Glazek, K., Gleichgewicht, B. 1977, โAbelian n-groupsโ, Proc. Congr. Math. Soc. J. Bolyai Esztergom (Hungaru) 29 pp. 321-329.
4. Kurosh, A. G. 1974, โGeneral algebra, Lections 1969-1970โ, Nauka, Moscow, 158 pp. (In Russian)
5. Rusakov, S. F. 1992, โAlgebraic ๐-ary systemsโ, Navuka i technika, Minsk, 264 pp. (In Russian)
6. Galโmak, A. M. 2003, โ๐-Ary groupsโ, Part I, Gomel university, Gomel, 195 pp. (In Russian)
7. Galโmak, A. M. 2007, โ๐-Ary groupsโ, Part 2, Publishing center of BSU, Minsk, 325 pp. (In Russian)
8. Crombez, G. 1972, โOn (n,m)-ringsโ, Abh. Math. Sem. Univ. 37, pp. 180-199.
9. Post, E. L. 1940, โPolyadic groupsโ, Trans. Amer. Math. Soc. 48, pp. 208-350.
10. Gluskin, L. M. 1965, โPositional oerativesโ, Math. collection, V.68 (110), No 3, pp. 444-472. (In Russian)
11. Hosszu, M. 1963, โOn the explicit form of n-group operacionsโ, Publ. Math. 10, pp. 88-92.
12. Shchuchkin, N.A. 2014, โDirect product of ๐-ary groupsโ, Chebyshevโs collection 15, Issue 2, pp. 101-121. (In Russian)
13. Glazek, K., Michalski, J., Sierockiะ, I. 1985, โOn evaluation of some polyadic groupsโ, Contributions to General Algebra 3, Proc. Conf., Vienna. pp. 159-171.
14. Khodabandeh, H., Shahryari, M. 2012, โOn the representations and automorphisms of polyadic
15. groupsโ, Commun. Algebra 40, pp. 2199-2212.
16. Shchuchkin, N.A. 2009, โSemicyclic ๐-ary groupsโ, Izv. Gomel State Univ. 3(54), pp. 186-194. (In Russian)
Review
For citations:
Shchuchkin N.A. Endomorphisms of semicyclic ๐-groups. Chebyshevskii Sbornik. 2021;22(1):353-369. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-1-353-369