Preview

Chebyshevskii Sbornik

Advanced search

The lattice of definability. Origins and Directions of Research

https://doi.org/10.22405/2226-8383-2021-22-1-304-327

Abstract

The article presents results and open problems related to definability spaces (reducts) and sources of this field since the XIX century. Finiteness conditions and constraints are investigated,
including the depth of quantifier alternation and the number of arguments. Results related to the description of lattices of definability spaces for numerical and other natural structures
are described. Research methods include the study of automorphism groups of elementary extensions of the structures under consideration, application of the Svenonius theorem.

About the Authors

Alexey Lvovich Semenov
Lomonosov Moscow State University, Axel Berg Institute of Cybernetics and Educational Computing FRC SCS of the Russian Academy of Sciences
Russian Federation


Sergey Fedorovich Soprunov
Center for pedagogical excellence, Axel Berg Institute of Cybernetics and Educational Computing FRC SCS of the Russian Academy of Sciences
Russian Federation


References

1. Addison, Jr. J. W. 1965, “The undefinability of the definable“, Notices Amer. Math. Soc., 12,

2. pp. 347.

3. Ahlbrandt, Gisela & Ziegler, Martin. 1992, “Invariant subgroups of 𝑉 𝑉 “, J. Algebra, 151, no. 1,

4. pp. 26–38.

5. B`es, Alexis & C´egielski, Patrick. 2008, “Weakly maximal decidable structures“, RAIRO –

6. Theoretical Informatics and Applications, 42.01, pp. 137–145.

7. B`es, Alexis & C´egielski, Patrick. 2009, “Nonmaximal decidable structures“, Journal of Mathematical

8. Sciences, 158.5, pp. 615–622.

9. Beth, Evert W. 1953, “On Padoa’s method in the theory of definition“, Indag. Math, 15, pp. 330–

10.

11. Bodirsky, M. & Macpherson, D. 2013, “Reducts of structures and maximal-closed permutation

12. groups“, arXiv:1310.6393.

13. Bodirsky, Manuel, Pinsker, Michael & Pongr´acz, Andr´as. 2013, “The 42 reducts of the random

14. ordered graph“, arXiv:1309.2165.

15. Bodirsky, Manuel, Pinsker, Michael & Tsankov, Todor. 2011, “Decidability of definability.“ IEEE

16. th Annual Symposium on Logic in Computer Science, pp. 321–328.

17. Boole, George. 1847, The mathematical analysis of logic, Philosophical Library.

18. Buchi, J. Richard & Danhof, Kenneth J. 1973, “Definibility in normal theories“, Israel Journal

19. of Mathematics, 14.3, pp. 248–256.

20. Cameron, Peter J. 1976, “Transitivity of permutation groups on unordered sets“. Mathematische

21. Zeitschrift, 148.2. – Pp. 127–139.

22. Duporcq, Ernest, ed. 1902, Compte rendu du deuxi`eme congr`es international des math´ematiciens

23. tenu `a Paris du 6 au 12 aoˆut 1900: proc`es-verbaux et communications, Gauthier-Villars,

24. imprimeur-library, 455 pp.

25. Elgot, Calvin C. & Rabin, Michael O. 1966, “Decidability and Undecidability of Extensions

26. of Second (First) Order Theory of (Generalized) Successor“, J. Symb. Log., Vol. 31, No. 2,

27. pp. 169–181.

28. Frasnay, Claude. 1965, “Quelques probl`emes combinatoires concernant les ordres totaux et les

29. relations monomorphes“, Annales de l’ institut Fourier, vol. 15, No. 2, pp. 415–524.

30. Frege, G. 1879, Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen

31. Denkens, Halle. Translated in van Heijenoort J. 1931, Begriffsschrift, a formula language,

32. modeled upon that of arithmetic, for pure thought. From Frege to G¨odel: A Source Book in

33. Mathematical Logic, pp. 3–82.

34. Frege, G. 1893, Grundgesetze der arithmetik, Publ. in 1964 by Jena: Verlag Hermann Pohle,

35. Band I/II. Partial translation of Band I, The Basic Laws of Arithmetic, by M. Furth, Berkeley:

36. U. of California Press.

37. Hilbert, David. 1900, “Mathematische probleme“, Nachrichten von der Gesellschaft der Wissenschaften

38. zu G¨ottingen, Mathematisch-Physikalische Klasse, pp. 253–297.

39. Hodges, Wilfrid. 1993, “Model theory“, Encyclopedia of Mathematics and its Applications,

40. vol. 42, Cambridge University Press, Cambridge.

41. Hodges, Wilfrid. 2000, Model Theory (Draft 20 Jul 2000). Available at: http://wilfridhodges.

42. co.uk/history07.pdf (accessed 25 December 2020).

43. Huntington, Edward V. 1904, “The continuum as a type of order: an exposition of the model

44. theory“, Ann. Math., 6, pp. 178–179.

45. Huntington, Edward V. 1906, “The Fundamental Laws of Addition and Multiplication in

46. Elementary Algebra“, The Annals of Mathematics, 8.1, pp. 1–44.

47. Huntington, Edward V. 1935, “Inter-Relations Among the Four Principal Types of Order“,

48. Transactions of the American Mathematical Society, 38.1, pp. 1–9.

49. International Congress of Philosophy. 1900–1903, Biblioth`eque du Congr`es International de

50. Philosophie, Four volumes. Paris: Librairie Armand Colin.

51. Junker, Markus & Ziegler, Martin. 2008, “The 116 reducts of (Q, <, 𝑎)“, Journal of Symbolic

52. Logic, vol. 73, issue 3, pp. 861–884. DOI: https://doi.org/10.2178/jsl/1230396752

53. Kaplan, I. & Simon, P. 2013, “The affine and projective groups are maximal“, arXiv:1310.8157.

54. Klein, Felix. 1872, Vergleichende betrachtungen ¨uber neuere geometrische forsuchungen,

55. A. Deichert.

56. Korec, Ivan. 2001, “A list of arithmetical structures complete with respect to the first-order

57. definability“, Theoretical computer science, 257.1, pp. 115–151.

58. Langford, Cooper Harold. 1926–1927, “Some theorems on deducibility“, Annals of Mathematics

59. Second Series, Vol. 28, No. 1/4, pp. 16–40.

60. Langford, Cooper Harold. 1926–1927, “Theorems on Deducibility (Second paper)“, Annals of

61. Mathematics, Second Series, Vol. 28, No. 1/4, pp. 459–471.

62. Lindenbaum, A. & Tarski, A. 1935, “ ¨Uber die Beschr¨anktheit der Ausdrucksmittel deduktiver

63. Theorien“, Ergebnisse eines Mathematischen Kolloquiums, Heft 7, pp. 15–22. (Engl. trans.: “On

64. the Limitations of the Means of Expression of Deductive Theories“, In Alfred Tarski: Logic,

65. Semantics, Metamathematics, J. Corcoran, ed., Hackett, Indianapolis, 1956, pp. 384–392.

66. L¨owenheim, Leopold. 1915, “ ¨Uber m¨oglichkeiten im relativkalk¨ul“, Mathematische Annalen,

67. 4, pp. 447–470.

68. Macpherson, D. 2011, “A survey of homogeneous structures“, Discrete Mathematics, vol. 311,

69. No 15, pp. 1599–1634.

70. Marker, D.& Pillay, A. 1990, “Reducts of (𝐶,+, ·) which contain +“, Journal of Symbolic Logic,

71. vol. 55, issue 3, pp. 1243–1251.

72. Marker, D., Peterzil, Y. A.& Pillay, A. 1992, “Additive reducts of real closed fields“, The Journal

73. of symbolic logic, vol. 57, issue 1, pp. 109–117. DOI: https://doi.org/10.2307/2275179.

74. Mostowski, Andrzej. 1952, “On direct products of theories“, Journal of Symbolic Logic, vol. 17,

75. pp. 1–31.

76. Muchnik, An. A. 1992, “Games on infinite trees and automata with dead-ends. A new proof

77. for the decidability of the monadic second order theory of two successors“, Bull. EATCS, 48,

78. pp. 220–267.

79. Muchnik, An. A. 2003, “The definable criterion for definability in Presburger arithmetic and its

80. applications“, Theoretical Computer Science, 290.3, pp. 1433–1444.

81. Padoa Alessandro. 1900, “Logical introduction to any deductive theory“, In From Frege to G¨odel.

82. A Source Book in Mathematical Logic, 1879–1931. Ed. by Jean van Heijenoort. Cambridge,

83. Mass., Harvard University Press, pp. 118—123.

84. Peacock, George. 1834, “Report on the recent progress and present state of certain branches of

85. analysis“, Report of the third meeting of the British Association for the Advancement of Science

86. held at Cambridge in 1833, John Murrary, London, pp. 185–352.

87. Peirce, Charles Sanders. 1873, “Description of a notation for the logic of relatives, resulting

88. from an amplification of the conceptions of Boole’s calculus of logic“, Memoirs of the American

89. academy of arts and sciences, vol. 9, part 2, pp. 317–378.

90. Peirce, Charles Sanders. 1885, “On the algebra of logic: A contribution to the philosophy of

91. notation“, American journal of mathematics, 7.2, pp. 180–196.

92. Peterzil, Ya’acov. 1993, “Reducts of some structures over the reals“, Journal of Symbolic Logic,

93. 3, pp. 955–966. DOI: https://doi.org/10.2307/2275107.

94. Pieri, Mario. 1908, “La geometria elementare istituita sulle nozioni ‘punto’ ´e ‘sfera’“, Memorie

95. di matematica e di fisica della Societ`a italiana delle scienze, 15, pp. 345–450.

96. Presburger, M. 1930, “ ¨Uber die Vollst¨andigkeit eines gewissen Systems der Arithmetik

97. ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt“, Sprawozdanie z

98. Kongresu Matematyk´ow Krajow Slowianskich, Ksiaznica Atlas. pp. 92–10. (Translated: “On

99. the completeness of a certain system of arithmetic of whole numbers in which addition occurs

100. as the only operation“, History and Philosophy of Logic, 12(2), 1991, pp. 225–233.)

101. Rabin, Michael O. 1969, “Decidability of second-order theories and automata on infinite trees“,

102. Transactions of the American Mathematical Society, 141, pp. 1–35.

103. Rado, Richard. 1964, “Universal graphs and universal functions“, Acta Arithmetica, 9.4, pp. 331–

104.

105. Schr¨oder, Ernst. 1898, “On Pasigraphy. Its Present State and the Pasigraphic Movement in

106. Italy“, The Monist, 9.1, pp. 44–62.

107. Schr¨oder, Ernst. 1966, Vorlesungen ¨uber die Algebra der Logik, Volumes 1 to 3. Teubner, Leipzig.

108. Reprinted by Chelsea, New York.

109. Semenov, A. L. 1977, “Presburgerness of Predicates Regular in Two Number Systems“, Siberian

110. Math. J., 18.2, pp. 289–300.

111. Semenov, A. L. 1980, “On certain extensions of the arithmetic of addition of natural numbers”,

112. Izvestiya: Mathematics, 15.2, pp. 401–418.

113. Semenov, A. L. 2003, “Finiteness Conditions for Algebras of Relations“, Proceedings of the

114. Steklov Institute of Mathematics, 242, pp. 92–96.)

115. Semenov, A. & Soprunov, S. 2011, “Finite quantifier hierarchies in relational algebras“,

116. Proceedings of the Steklov I Institute of Mathematics, 274.1, pp. 267–272.

117. Semenov, A. L. & Soprunov, S. F. 2012, “Lattice of relational algebras definable in integers with

118. successor“, arXiv:1201.4439.

119. Semenov, A. L. & Soprunov, S. F. 2013, A combinatorial version of the Svenonius theorem on

120. definability, Logic Journal of IGPL. – 23.6 (2015): 966–975.

121. Skolem, Thoralf. 1920, “Logisch-kombinatorische Untersuchungen ¨uber die Erfullbarkeit oder

122. Beweisbarkeit mathematischer Sdtze nebst einem Theorem ¨uber dichte Mengen“, Videnskapsselskapets

123. skrifter, I. Matematisk-naturvidenskabelig klasse 4.

124. Skolem, Torlaf. 1930, “ ¨Uber gewisse Satzfunktionen in der Arithmetik“, Skrifter utgit av

125. Videnskapsselskapet i Kristiania, I. klasse 7.

126. Smith, James T. 2010, “Definitions and Nondefinability in Geometry“, The American Mathematical

127. Monthly, 117.6, pp. 475–489.

128. Soprunov, S. 1988, “Razreshimye obogashchenia struktur – Decidable expansions of structures“,

129. Vopr. Kibern., 134, pp. 175–179 (in Russian).

130. Svenonius, Lars. 1959, “A theorem on permutations in models“, Theoria, 25.3, pp. 173–178.

131. Tanaka, Hisao. 1967, “Some results in the effective descriptive set theory“, Publications of the

132. Research Institute for Mathematical Sciences, 3.1, pp. 11–52.

133. Tarski, Alfred. 1935, “DerWahrheitsbegriff in den formalisierten Sprachen“, Studia Philosophica,

134. vol. 1, pp. 261–405.

135. Tarski, Alfred. 1935, “Einige methodologifche Unterfuchungen ¨uber die Definierbarkeit der

136. Begriffe“, Erkenntnis, 5.1, pp. 80–100.

137. Tarski, Alfred. 1951, A decision method for elementary algebra and geometry. Prepared for

138. publication with the assistance of J. C. C. McKinsey. Second edition, revised. Lithoprinted.

139. University of California Press, Berkeley and Los Angeles, iii + 63 pp.

140. Tarski, Alfred. 1983, “The Concept of Truth in Formalized Languages“, Alfred Tarski: Logic,

141. Semantics, Metamathematics. Trans. J. H. Woodger, second edition ed. and introduced by John

142. Corcoran, Hackett, Indianapolis, pp. 152–278.

143. Tarski, Alfred. 1986, “What are logical notions?“ History and philosophy of logic, 7.2, pp. 143–

144.

145. Thomas, Simon. 1991, “Reducts of the random graph“, Journal of Symbolic Logic, 56(1), pp. 176–

146.

147. Thomas, Simon. 1996, “Reducts of random hypergraphs“, Annals of Pure and Applied Logic,

148. 2, pp. 165–193.

149. Winkler, Peter. 1993, Random structures and zero-one laws. Finite and infinite combinatorics

150. in sets and logic, Springer Netherlands, pp. 399–420.


Review

For citations:


Semenov A.L., Soprunov S.F. The lattice of definability. Origins and Directions of Research. Chebyshevskii Sbornik. 2021;22(1):304-327. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-1-304-327

Views: 340


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)