Решетка определимости. Источники и направления исследований
https://doi.org/10.22405/2226-8383-2021-22-1-304-327
Аннотация
В статье представлены результаты и открытые проблемы, относящиеся к пространствам определимости (редуктам), а также источникам этой области, начиная с XIX века. Исследуются условия конечности и ограничения, в том числе глубина чередования кванторов и число аргументов. Описаны результаты, относящиеся к описанию решеток
пространств определимости для числовых и других естественных структур. Методы исследования включают изучение групп автоморфизмов элементарных расширений рассматриваемых структур, использование теоремы Свенониуса
Ключевые слова
Об авторах
Алексей Львович СеменовРоссия
Сергей Федорович Сопрунов
Россия
Список литературы
1. Tarski Alfred. What are logical notions? // History and philosophy of logic, 1986, 7.2. — Pp. 143–154.
2. Buchi J. Richard, Danhof Kenneth J. Definibility in normal theories. // Israel Journal of Mathematics, 1973, 14.3. — Pp. 248–256.
3. Smith James T. Definitions and nondefinability in geometry. // The American Mathematical Monthly, 2010, 117.6. — Pp. 475–489.
4. Hodges Wilfrid. Model Theory (Draft 20 Jul 2000) // 2000. [Электронный ресурс] URL: http://wilfridhodges.co.uk/history07.pdf (дата обращения 25 декабря 2020 г.).
5. Peacock George. Report on the recent progress and present state of certain branches of analysis. // Report of the third meeting of the British Association for the Advancement of Science held at Cambridge in 1833, John Murrary, London, 1834. — Pp. 185–352.
6. Boole George. The mathematical analysis of logic. // Philosophical Library, 1847.
7. Frege Gottlob. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen
8. Denkens. // Halle, 1879. Translated in van Heijenoort J. Begriffsschrift, a formula language,
9. modeled upon that of arithmetic, for pure thought. From Frege to G¨odel: A Source Book in Mathematical Logic. 1931. — Pp. 3–82.
10. Frege Gottlob. Grundgesetze der Arithmetik. // 1893. Publ. by Jena: Verlag Hermann Pohle, Band I/II. Partial translation of Band I, The Basic Laws of Arithmetic, by M. Furth. Berkeley:
11. U. of California Press, 1964.
12. Peirce Charles Sanders. Description of a notation for the logic of relatives, resulting from an amplification of the conceptions of Boole’s calculus of logic. // Memoirs of the American academy of arts and sciences, 1873, vol. 9, part 2. — Pp. 317–378.
13. Peirce Charles Sanders. On the algebra of logic: A contribution to the philosophy of notation.
14. // American journal of mathematics, 1885, 7.2. – Pp. 180–196.
15. L¨owenheim Leopold. ¨Uber m¨oglichkeiten im relativkalk¨ul. // Mathematische Annalen, 1915,
16. 4. – Pp. 447–470.
17. Skolem Thoralf. Logisch-kombinatorische Untersuchungen ¨uber die Erfullbarkeit oder Beweisbarkeit
18. mathematischer Sdtze nebst einem Theorem ¨uber dichte Mengen. // Videnskapsselskapets
19. skrifter, I. Matematisk-naturvidenskabelig klasse 4, 1920.
20. Schr¨oder Ernst. On Pasigraphy. Its Present State and the Pasigraphic Movement in Italy. //
21. The Monist, 1898, 9.1. – Pp. 44–62.
22. Schr¨oder E. Vorlesungen ¨uber die Algebra der Logik. Volumes 1 to 3. // Teubner, Leipzig.
23. Reprinted by Chelsea, New York, 1966.
24. International Congress of Philosophy. // Biblioth`eque du Congr`es International de Philosophie,
25. Four volumes. Paris: Librairie Armand Colin, 1900–1903.
26. Compte rendu du deuxi`eme сongr`es international des math´ematiciens tenu `a Paris du 6 au 12
27. aoˆut 1900: proc`es-verbaux et communications. // Publies par Ernest Duporcq. Gauthier-Villars, imprimeur-libraire, 1902. – 455 pp.
28. Hilbert David. Mathematische probleme. // Nachrichten von der Gesellschaft der Wissenschaften
29. zu G¨ottingen, Mathematisch-Physikalische Klasse, 1900. – Pp. 253–297.
30. Padoa Alessandro. Logical introduction to any deductive theory. // 1900. Опубл. в сб. From
31. Frege to G¨odel. A Source Book in Mathematical Logic, 1879–1931. Ed. by Jean van Heijenoort.
32. Cambridge, Mass., Harvard University Press, 1967. – Pp. 118—123.
33. Pieri Mario. La geometria elementare istituita sulle nozioni ‘punto’ ´e ‘sfera’. // Memorie di
34. matematica e di fisica della Societ`a italiana delle scienze, 1908, 15. – Pp. 345–450.
35. Lindenbaum A., Tarski A. ¨Uber die Beschr¨anktheit der Ausdrucksmittel deduktiver Theorien.
36. // Ergebnisse eines Mathematischen Kolloquiums, Heft 7, 1935. – Pp. 15–22. Пер. на англ.:
37. On the Limitations of the Means of Expression of Deductive Theories. // Alfred Tarski. Logic,
38. Semantics, Metamathematics. // J. Corcoran, ed., Hackett, Indianapolis, 1956. – Pp. 384–392.
39. Huntington Edward V. Inter-Relations Among the Four Principal Types of Order. //
40. Transactions of the American Mathematical Society, 1935, 38.1. – Pp. 1–9.
41. Tarski Alfred. The Concept of Truth in Formalized Languages. // Alfred Tarski: Logic,
42. Semantics, Metamathematics. Trans. J. H.Woodger, second edition ed. and introduced by John
43. Corcoran, Hackett, Indianapolis, 1983. – Pp. 152–278.
44. Langford Cooper Harold. Some theorems on deducibility. // Annals of Mathematics Second
45. Series, 1926–1927, vol. 28, No. 1/4. – Pp. 16–40.
46. Langford Cooper Harold. Theorems on Deducibility (Second paper). // Annals of Mathematics,
47. Second Series, 1926–1927,Vol. 28, No. 1/4. – Pp. 459–471.
48. Presburger M. ¨Uber die vollst¨andigkeit eines gewissen systems der arithmetik ganzer zahlen,
49. in welchem die addition als einzige operation hervortritt. // Sprawozdanie z 1 Kongresu
50. Matematyk´ow Krajow Slowianskich, Ksiaznica Atlas, 1930. – Pp. 92–10. Пер. на англ.: On
51. the completeness of a certain system of arithmetic of whole numbers in which addition occurs
52. as the only operation. // History and Philosophy of Logic, 12(2), 1991. – Pp. 225–233.
53. Skolem Torlaf. ¨Uber gewisse Satzfunktionen in der Arithmetik. // Skrifter utgit av Videnskapsselskapet
54. i Kristiania, I. klasse 7, 1930.
55. Mostowski Andrzej. On direct products of theories. // Journal of Symbolic Logic, 1952, vol. 17. –
56. Pp. 1—31.
57. Tarski Alfred. A decision method for elementary algebra and geometry. // Prepared for
58. publication with the assistance of J. C. C. McKinsey. Second edition, revised. Lithoprinted.
59. University of California Press, Berkeley and Los Angeles, 1951. – 63 pp.
60. Семенов А. Л. Условия конечности для алгебр отношений. // Труды математического ин-
61. ститута им. В. А. Стеклова, 2003, т. 242. — С. 103–107.
62. Семенов А. Л., Сопрунов С. Ф. Конечные кванторные иерархии в алгебрах отношений. //
63. Труды Математического института им. В. А. Стеклова, 2011, т. 274. – C. 291–296.
64. Семенов А. Л. О некоторых расширениях арифметики сложения натуральных чисел //
65. Известия Академии наук СССР. Серия математическая. 1979. Т. 43, № 5. – С. 1175–1195.
66. Rabin Michael O. Decidability of second-order theories and automata on infinite trees. //
67. Transactions of the American Mathematical Society, 1969, 141. – pp. 1–35.
68. Muchnik An. A. Games on infinite trees and automata with dead-ends. A new proof for the
69. decidability of the monadic second order theory of two successors. // Bull. EATCS, 1992, 48. –
70. Pp. 220–267.
71. Elgot Calvin C., Rabin Michael O. Decidability and Undecidability of Extensions of Second
72. (First) Order Theory of (Generalized) Successor. // J. Symb. Log., 1966, vol. 31, No. 2. –
73. Pp. 169–181.
74. Сопрунов С. Ф. Разрешимые обогащения структур. // Вопросы кибернетики, 1988, т. 134. –
75. С. 175–179.
76. B`es Alexis, C´egielski Patrick. Weakly maximal decidable structures. // RAIRO – Theoretical
77. Informatics and Applications, 2008, 42.01. – Pp. 137–145.
78. B`es Alexis, C´egielski Patrick. Nonmaximal decidable structures. // Journal of Mathematical
79. Sciences, 2009, 158.5. – Pp. 615–622.
80. Tarski Alfred. Der Wahrheitsbegriff in den formalisierten Sprachen. // Studia Philosophica,
81. , vol. 1. – Pp. 261–405.
82. Tarski Alfred. Einige methodologifche Unterfuchungen ¨uber die Definierbarkeit der Begriffe. //
83. Erkenntnis, 1935, 5.1. – Pp. 80–100.
84. Beth Evert W. On Padoa’s method in the theory of definition. // Indag. Math, 1953, 15. –
85. Pp. 330–339.
86. Svenonius Lars. A theorem on permutations in models. // Theoria, 1959, 25.3. – Pp. 173–178.
87. Klein Felix. Vergleichende betrachtungen ¨uber neuere geometrische forsuchungen. //
88. A. Deichert, 1872.
89. Huntington Edward V. The fundamental laws of addition and multiplication in elementary
90. algebra. // The Annals of Mathematics, 1906, 8.1. – Pp. 1–44.
91. Semenov A. L., Soprunov S. F. A combinatorial version of the Svenonius theorem on definability,
92. Logic Journal of IGPL. – 23.6 (2015): 966–975.
93. Macpherson D. A survey of homogeneous structures. // Discrete Mathematics, 2011, vol. 311,
94. No. 15. – Pp. 1599–1634.
95. Hodges Wilfrid. Model theory. // Encyclopedia of Mathematics and its Applications, 1993,
96. vol. 42, Cambridge University Press, Cambridge.
97. Korec Ivan. A list of arithmetical structures complete with respect to the first-order definability.
98. // Theoretical computer science, 2001, 257.1. – Pp. 115–151.
99. Семенов А. Л. Пресбургеровость предикатов, регулярных в двух системах счисления. //
100. Сибирский математический журнал, 1977, т. 18, № 2. — С. 403–418.
101. Frasnay Claude. Quelques probl`emes combinatoires concernant les ordres totaux et les relations
102. monomorphes. // Annales de l’ institut Fourier, 1965, vol. 15, No. 2. – Pp. 415–524.
103. Huntington Edward V. The continuum as a type of order: an exposition of the model theory.
104. // Ann. Math., 1904, 6. – Pp. 178–179.
105. Cameron Peter J. Transitivity of permutation groups on unordered sets. // Mathematische
106. Zeitschrift, 1976, 148.2, Pp. 127–139.
107. Winkler Peter. Random structures and zero-one laws. Finite and infinite combinatorics in sets
108. and logic, Springer Netherlands, 1993. – Pp. 399–420.
109. Rado Richard. Universal graphs and universal functions. // Acta Arithmetica, 1964, 9.4. –
110. Pp. 331–340.
111. Thomas Simon. Reducts of random hypergraphs. // Annals of Pure and Applied Logic, 1996,
112. 2. – Pp. 165–193.
113. Thomas Simon. Reducts of the random graph. // Journal of Symbolic Logic, 1991, 56(1). –
114. Pp. 176–181.
115. Bodirsky Manuel, Pinsker Michael, Pongr´acz Andr´as. The 42 reducts of the random ordered
116. graph. // 2013, arXiv:1309.2165.
117. Junker Markus, Ziegler Martin. The 116 reducts of (Q, <, 𝑎). // Journal of Symbolic Logic,
118. , vol. 73, issue 3. – Pp. 861–884. DOI: https://doi.org/10.2178/jsl/1230396752.
119. Ahlbrandt Gisela, Ziegler Martin. Invariant subgroups of 𝑉 𝑉 . // J. Algebra, 1992, 151, no. 1. –
120. Pp. 26–38.
121. Bodirsky M., Macpherson D. Reducts of structures and maximal-closed permutation groups.
122. // 2013, arXiv:1310.6393.
123. Kaplan I., Simon P. The affine and projective groups are maximal. // 2013, arXiv:1310.8157.
124. Marker D., Peterzil Y. A., Pillay A. Additive reducts of real closed fields. // The Journal of
125. symbolic logic, 1992, vol. 57, issue 1. – Pp. 109–117. DOI: https://doi.org/10.2307/2275179.
126. Peterzil Ya’acov. Reducts of some structures over the reals. // Journal of Symbolic Logic, 1993,
127. 3. – Pp. 955–966. DOI: https://doi.org/10.2307/2275107.
128. Marker D., Pillay A. Reducts of (C,+, ·) which contain +. // Journal of Symbolic Logic, 1990,
129. vol. 55, issue 3. – Pp. 1243–1251.
130. Semenov A. L., Soprunov S. F. Lattice of relational algebras definable in integers with successor.
131. // 2012, arXiv:1201.4439
132. Bodirsky Manuel, Pinsker Michael, Tsankov Todor. Decidability of definability. // IEEE 26th
133. Annual Symposium on Logic in Computer Science, 2011. – Pp. 321–328.
134. Muchnik An. A. The definable criterion for definability in Presburger arithmetic and its
135. applications. // Theoretical Computer Science, 2003, 290.3. – Pp. 1433–1444.
136. Addison Jr. J. W. The undefinability of the definable. // Notices Amer. Math. Soc., 1965, 12. –
137. Pp. 347.
138. Tanaka Hisao. Some results in the effective descriptive set theory. // Publications of the
139. Research Institute for Mathematical Sciences, 1967, 3.1. – Pp. 11–52.
Рецензия
Для цитирования:
Семенов А.Л., Сопрунов С.Ф. Решетка определимости. Источники и направления исследований. Чебышевский сборник. 2021;22(1):304-327. https://doi.org/10.22405/2226-8383-2021-22-1-304-327
For citation:
Semenov A.L., Soprunov S.F. The lattice of definability. Origins and Directions of Research. Chebyshevskii Sbornik. 2021;22(1):304-327. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-1-304-327