Preview

Chebyshevskii Sbornik

Advanced search

On a locally nilpotent radical Jacobson for special Lie algebras

https://doi.org/10.22405/2226-8383-2021-22-1-234-272

Abstract

In the paper investigates the possibility of homological description of Jacobson radical and locally nilpotent radical for Lie algebras, and their relation with a $$PI$$ - irreducibly represented radical, and some properties of primitive Lie algebras are studied. We prove an analog of The F. Kubo  theorem for almost locally solvable Lie algebras with a zero Jacobson radical. It is shown that the Jacobson radical of a special almost locally solvable Lie algebra $$L$$ over a field $$F$$ of characteristic zero is zero if and only if the Lie algebra $$L$$ has a Levi decomposition $$L=S\oplus Z(L)$$, where $$Z(L)$$ is the center of the algebra $$L$$, $$S$$ is a finite-dimensional subalgebra $$L$$ such that $$J(L)=0$$. For an arbitrary special Lie algebra $$L$$, the inclusion of $$IrrPI(L)\subset J(L)$$ is shown, which is generally strict. An example of a Lie algebra $$L$$ with strict inclusion  $$J(L)\subset IrrPI(L)$$ is given. It is shown that for an arbitrary special Lie algebra $$L$$ over the field $$F$$ of characteristic zero, the inclusion of $$N (L)\subset IrrPI(L)$$, which is generally strict. It is shown that most Lie algebras over a field are primitive. An example of an Abelian Lie algebra over an algebraically closed field that is not primitive is given. Examples are given showing that infinite-dimensional commutative Lie algebras are primitive over any fields; a finite-dimensional Abelian algebra of dimension greater than 1 over an algebraically closed field is not primitive; an example of a non-Cartesian noncommutative Lie algebra is primitive. It is shown that for special Lie algebras over a field of characteristic zero $$PI$$-an irreducibly represented radical coincides with a locally nilpotent one. An example of a Lie algebra whose locally nilpotent radical is neither locally nilpotent nor locally solvable is given. Sufficient conditions for the primitiveness of a Lie algebra are given, and examples of primitive Lie algebras and non-primitive Lie algebras are given.

About the Authors

Olga Alexandrovna Pikhtilkova
Russian technological University MIREA
Russian Federation

candidate of physical and mathematical sciences, associate
professor



Elena Vladimirovna Meshcherina
Orenburg State University
Russian Federation

candidate of physical and mathematical sciences



Anna Nikolaevna Blagovisnaya
Orenburg State University
Russian Federation

candidate of physical and mathematical sciences



Elena Vladislavovna Pronina
Russian technological University MIREA
Russian Federation

candidate of physical and mathematical sciences, associate
professor



Olga Alekseevna Evseeva
Russian technological University MIREA
Russian Federation


References

1. Burbaki, N. 1976, Gruppy i algebry Li (glavy I-III) [Lie groups and algebras (chapters I-III)], Мir, Moscow, Russia.

2. Razmyslov, U. P. 1971, “ Ob engelevyh algebrah Li [On Engel Lie algebras]”, Algebra i logika, v. 10.- № 10, pp. 33-44.

3. Kostrikin, A. I. 1986, Vokrug Bernsajda [Around Burnside], Nauka, Moscow, Russia.

4. Kubo, F. 1991, “Infinite-dimensional Lie algebras with null Jacobson radical”, Bull. Kyushu Inst. Technol. Math. Nat. Sci., v. 38. pp. 23-30.

5. Togo, S. 1972, “Radicals of infinite-dimensional Lie algebras”, Hiroshima Math. J., v. 2, pp. 179-203.

6. Togo, S., Kavamoto, N. 1972, “Ascendantly coalescent classes and radicals of Lie algebras” Hiroshima Math. J., v. 2, pp. 253-261.

7. Marshall, E. I. 1967, “The Frattini subalgebras of a Lie algebra”, J. London Math. Soc., v. 42, pp. 416-422.

8. Latyshev, V. N. 1963, “On Lie Algebras with Identities ratios”, Sib. mat. magazine, v. 4. № 4. pp. 821-829.

9. Beidar, K. I., Pikhtilkov, S. A. 1994, “O pervichnom radikale special’nyh algebr Li [On a primary radical special Lie algebras]”, Uspekhi matem. nauk, № 1, p. 233.

10. Beidar, K. I., Pikhtilkov, S. A. 2000, “Primary radical special Lie algebras”, Fundamental and applied mathematics, t. 6, v. 3, pp. 643-648.

11. Pikhtilkov, S. A. 2002, “On a locally nilpotent radical special Lie algebras”, Fundamental and Applied Mathematics, t. 8, v. 3, pp. 769-782.

12. Parfenov, V.A. 1971, “O slabo razreshimom radikale algebr Li [On the weakly solvable radical of Lie algebras]”, Siberian Mathematical Journal, v. 12, № 1, pp. 171-176.

13. Pihtil’kov S.A. 2001, “Artinovy special’nye algebry Li [Artinian special Lie algebras]”, V mv. sb. Algoritmicheskie problemy teorii grupp i polugrupp, Tula:ТGPU, pp. 189-194.

14. Pikhtilkov, S.A., 2005, “Strukturnaya teoriya special’nyh algebr Li [The structural theory of special Lie algebras]”, Izd-vo TGPU im. L.N. Tolstogo, Tula, pp. 45-48.

15. Pikhtilkov, S.A., Polyakov, V.M., 2005, “About locally nilpotent Artinian Lie algebras”, Chebyshevskii sbornik, Tula, v. 6, № 1, pp. 163-169.

16. Herstein, I., 1972, Nekommutativnye kol’ca Noncommutative rings], Mir, Moscow, Russia.

17. Kemer, A.R. 1980, “Tozhdestva Kapelli i nil’potentnost’ radikala konechno porozhdennoj PI- algebry [Capelli identities and the nilpotency of the radical of a finitely generated PI - algebra]”, DAN SSSR, v. 255, № 4, pp. 793-797.

18. Braun, A. 1984, “The nilpotency of the radical in a finitely generated 𝑃𝐼-ring”, J of Algebra, v. 89, № 2, pp. 375-396.

19. SHirshov, A.I. 1957, “O kol’cah s tozhdestvennymi sootnosheniyami [On rings with identical relations]”Mat. sbornik, v. 43, № 2, pp. 277-283.

20. Razmyslov , YU.P. 1989, Tozhdestva algebr i ih predstavleniya [Identities of algebras and their representations], Nauka, Moscow, Russia.

21. Lambek, I., 1971, Kol’ca i moduli [Rings and modules], Mir, Moscow, Russia.

22. Beidar, K.I., Martindale, W.S., Mikhalev, A.V. 1996, Rings with generalized identities, Pure and Applied Mathematics, Marcel-Dekker, New-York, USA.

23. Baxter, W.E., Martindale, 1979, “W.S. Central closure of semiprime non-associative rings”, Commun. of Algebra, v. 7, № 11, pp. 1105-1132.

24. Pikhtilkov, S. A. 1974, “Primitive free associative algebra with a finite number of generators”, Uspekhi matem. nauk, № 1. pp. 183-184.

25. Amayo, R., Stewart, I. 1974, Infinite dimensional Lie algebras, Noordhoof, Leyden, Netherlands.

26. Latyshev, V.N., Mihalev, A.V., Pihtil’kov, S.A. 2003, “O summe lokal’no razreshimyh idealov algebr Li [On the sum of locally solvable ideals of Lie algebras]”, MSU Bulletin, ser. 1. matem., mekh., № 3, pp. 29-32.

27. Bahturin, Yu. 1980, “On Lie subalgebras of associative PI-algebras”, J. Algebra, v. 67, № 2, pp. 257-271.

28. Itogi nauki i tekhniki. Seriya “Sovremennye problemy matematiki. Fundamental’nye napravleniya”, vol. 18, Algebra-2, VINITI, Moscow, Russia.

29. Razmyslov, U. P. 1974, “ O radikale Dzhekobsona v 𝑃𝐼-algebrah [On the Jacobson radical in PI - algebras]”, Algebra i logika, v. 13.- № 3, pp. 337-360.

30. Bahturin, YU.A. 1985, “O stroenii PI-obolochki konechnomernoj algebry Li [On the structure of the PI - shell of a finite-dimensional Lie algebra]”, Izv. vuzov. ser. Matem., № 11, pp. 60-62.

31. Balaba, I.N., Mikhalev, A.V., Pikhtilkov, S.A., 2006, “The primary radical of graded Ω -groups”, Fundamentalnaya i prikladnaya matematika, Moscow, v. 12, № 2, pp. 159-174.

32. Jacobson, N. 1961 Stroenie kolec, Translated by Andrunakievich, V.A., in Kurosh, A.G. (ed.), Izd-vo inostr. literatury, Moscow, Russia.

33. Billig Yu.V. 1988, “On the homomorphic image of a special Lie algebras”, Mat. sbornik, v. 136, № 3, pp. 320-323.

34. Pikhtilkov, S. A. 1981, “On special Lie algebras”, Uspehi Mat. nauk, v. 36, № 6, pp. 225-226.

35. Kamiya, N. 1979, “On the Jacobson radicals of infinite-dimensional Lie algebras”, Hiroshima Math. J., v. 9, pp.37-40.

36. Jacobson, N. 1964, Lie Algebras, Translated by ZHizhchenko, A.B., in Kurosh, A.G. (ed.), Mir, Moscow, Russia.

37. Bakhturin, Yu. A. 1985, Tozhdestva v algebrakh Li [Identities in Lie algebras], Nauka, Moscow, Russia.

38. Terekhova, Yu. A. 1994, “On the Levi theorem for special Lie algebras”, Algorithmic Problems group and semigroup theories. Interuniversity collection of scientific works, Tula: Izd-vo TGPI

39. im. L.N. Tolstogo, pp. 97-103.

40. Matematicheskaya enciklopediya, 1977, in Vinogradov, I. M. (ed.), M.: Sov. enciklopediya, 1977-1985, v. 1 : А - Г.

41. Simonyan, L. A. 1993, “O radikale Dzhekobsona algebry Li”, Latvijskij matematicheskij ezhegodnik, release 34, pp. 230-234.

42. Dixmier, J. 1978, Universal’nyye obertyvayushchiye algebry [Universal enveloping algebras], Mir, Moscow, Russia.


Review

For citations:


Pikhtilkova O.A., Meshcherina E.V., Blagovisnaya A.N., Pronina E.V., Evseeva O.A. On a locally nilpotent radical Jacobson for special Lie algebras. Chebyshevskii Sbornik. 2021;22(1):234-272. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-1-234-272

Views: 350


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)