Стохастический анализ механической системы на предмет ее надежности с различными услугами по ремонту
https://doi.org/10.22405/2226-8383-2021-22-1-92-104
Аннотация
Надежность увеличивает свою ценность в развитии механического и промышленного мира за счет включения механизма ремонта, доступности и возможности изготовления машин с различной рабочей мощностью в любых условиях. Настоящая статья представляет собой инициативу, предпринятую с механической системой, работающей с единым сервером ремонта для различного характера отказов и услуг. Стратегия пассивной резервной машины используется для поддержания надежности системы на удовлетворительном уровне. Процесс проверки включен для фильтрации машин в зависимости от их неисправности или уровня ремонтных услуг. Вычисленные числовые и графические данные оказались полезными для выяснения поведения прибыли и надежности при увеличении / уменьшении скорости механизма ремонта и интенсивности отказов. Политика предпочтений была инициирована для регулярных сбоев или сбоев, требующих обычных затрат наобслуживание и периода времени, чем основные, чтобы избежать времени ожидания для обычного клиента
Об авторах
Джасдев БхаттиРоссия
доцент
Мохит Кумар Каккар
Россия
профессор
Манприт Каур
Россия
доцент
Дипика .
Россия
доцент
Панкадж Кханна
Россия
Список литературы
1. Bhardwaj N., Kumar A. & Kumar S. Stochastic analysis of a single unit redundant system with two kinds of failure and repairs // Reflections des. ERA-JMS. 2008. Vol. 3, No. 2. P. 115–134.
2. Bhardwaj N. Analysis of two-unit redundant system with imperfect switching and connectiontime // International Transactions in Mathematical Sciences and Computer. 2009. Vol. 2, No. 2. P. 195–202.
3. Haggag M. Y. Cost analysis of a system iInvolving common cause failures and preventive maintenance // J. Math and Stat. 2009. Vol. 5, No. 4. P. 305-310.
4. Haggag M. Y. Cost analysis of two-dissimilar unit cold standby system with three states and preventive maintenance using linear first order differential equations // J. Math and Stat. 2009.
5. Vol. 5, No. 4. P. 395-400.
6. Rizwan S. M., Khurana V. & Taneja G. Reliability analysis of a hot standby industrial system // International Journal of Modelling and Simulation. 2010. Vol. 30, No. 3. P. 315-322.
7. Kumar A. & Malik S. C. Reliability modeling of a computer system with priority to S/w replacement over H/w replacement subject to MOT and MRT // International Journal of Pure and Applied Mathematics. 2012. Vol. 80, No. 5. P. 693-709.
8. Singh D. & Taneja G. Reliability and economic analysis of a power generating system comprising one gas and one steam turbine with random inspection // Journal of Mathematics and Statistics. 2014. Vol. 10, No. 4. P. 436-442.
9. Malhotra R. & Taneja G. Stochastic analysis of a two-unit cold standby system wherein both units may become operative depending upon the demand // Journal of Quality and Reliability
10. Engineering. 2014. P. 1-13.
11. Malhotra R. & Taneja G. Comparative study between a single unit system and a two unit cold standby system with varying demand // SpringerPlus. 2015. Vol. 4, P. 1-17.
12. Bhatti J., Chitkara A. & Kakkar M. Stochastic analysis of parallel system with two discrete failures // Model Assisted Statistics and Applications. 2014. Vol. 9, P. 257-265.
13. Kakkar M. K. & Bhatti J. Reliability and profit analysis of standby unit system with correlated life time in an industry // Advance Study in Contemporary Mathematics. 2015. Vol. 25, No. 3. P. 333-340.
14. Kakkar M. K., Chitkara A. K. & Bhatti J. Reliability analysis of two-unit parallel repairable industrial system // Decision Science Letters. 2015. Vol. 4, P. 525-536.
15. Kakkar M. K., Chitkara A. K. & Bhatti J Reliability analysis of two dissimilar parallel unit repairable system with failure during preventive maintenance // Management Science Letters,
16. vol. 6, pp. 285-296.
17. Bhatti J., Chitkara A. & Kakkar M. Stochastic analysis of dis-similar standby system with discrete failure, inspection and replacement policy // Demonstratio Mathematica. 2016. Vol.
18. , No. 2. P. 224-235.
19. Hua D. G. & Elsayed E. Reliability estimation of k-out-of-npairs: G balanced systems with spatially distributed units // IEEE Trans. Reliab. 2016. Vol. 65, P. 886—900.
20. Hua D. G. & Elsayed E. Degradation analysis of k-out-of-n pairs: G balanced systems with spatially distributed units // IEEE Trans Reliab. 2016. Vol. 65, P. 941–956.
21. Iqbal P. & Uduman P. S. S. Reliability analysis of paper plant using boolean function with fuzzy logic technique // International Journal of Applied Engineering Research. 2016. Vol. 11, No. 1.
22. P. 573-577.
23. Taj S. Z., Rizwan S. M., Alkali B. M., Harrison D. K. & Taneja G. Probabilistic modeling and analysis of a cable plant subsystem with priority to repair over preventive maintenance //
24. I-Managers Journal on Mathematics. 2017. Vol. 6, No. 3. P. 12-21.
25. Adlakha N., Taneja G. & Shilpi. Reliability and cost-benefit analysis of a two-unit cold standby system used for communication through satellite with assembling and activation time // International Journal of Applied Engineering Research. 2017. Vol. 12, No. 20. P. 9697-9702.
26. Cui L. R., Gao H. D. & Mo Y. C. Reliabilities for k-out-of-n: F balanced systems with m sectors // IISE Trans. 2017. Vol. 50, No. 5. P. 381–393.
27. Cui L. R., Chen J. H. & Li X. C. Balanced reliability systems under Markov processes // IISE Trans.. 2018. Vol. 51, No. 9. P. 1025-1035.
28. Endharta A. J., Yun W. Y. & Ko Y. M. Reliability evaluation of circular k-out-of-n:G balanced systems through minimal path sets // Reliability Engineering and System Safety. 2018. Vol.
29. , P. 220-236.
30. Chen W. L. System reliability analysis of retrial machine repair systems with warm standbys and a single server of working breakdown and recovery policy // System Engineering. 2018. Vol. 21, P. 59–69.
31. Bhardwaj S., Bhardwaj N., Kumar V. & Parashar B. Estimation of lifespan of diesel locomotive engine // Journal of Information and Optimization Sciences. 2019. Vol. 40, No. 5. P. 1097-1108.
32. Dong Q. L., Cui L. R. & Si S. B. Reliability and availability analysis of stochastic degradation systems based on bivariate wiener processes // Appl. Math. Model. 2019. Vol. 79, P. 414–433.
33. Wu H., Li Y. F. & B´erenguer C. Optimal inspection and maintenance for a repairable k -outofn: G warm standby system // Reliability Engineering and System Safety. 2019. Vol. 193, P.
34. -11.
35. Jia H.P., Ding Y., Peng R., Liu H. L. & Song Y. H. Reliability assessment and activation sequence optimization of non-repairable multi-state generation systems considering warm
36. standby // Reliability Engineering and System Safety. 2019. Vol. 195, P. 1-11.
37. Fang C. & Cui L. Reliability analysis for balanced engine systems with m sectors by considering start-up probability // Reliability Engi-neering and System Safety. 2019. Vol. 197, P. 1-10.
38. Kakkar M. K, Bhatti J, Malhotra R., Kaur M. & Goyal D. Availability analysis of an industrial system under the provision of replacement of a unit using genetic algorithm // International
39. Journal of Innovative Technology and Exploring En-gineering (IJITEE). 2019. Vol. 9, P. 1236–1241.
40. Bhatti J. & Kakkar M. K. Reliability analysis of cold standby parallel system possessing failure and repair rate under geometric distribution // Recent Advances in Computer Science and Communications. 2020. Vol. 13, P. 1-7.
Рецензия
Для цитирования:
Бхатти Д., Кумар Каккар М., Каур М., . Д., Кханна П. Стохастический анализ механической системы на предмет ее надежности с различными услугами по ремонту. Чебышевский сборник. 2021;22(1):92-104. https://doi.org/10.22405/2226-8383-2021-22-1-92-104
For citation:
Bhatti J., Kumar Kakkar M., Kaur M., . D., Khanna P. Stochastic analysis to mechanical system to its reliability with varrying repairing services. Chebyshevskii Sbornik. 2021;22(1):92-104. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-1-92-104