Preview

Chebyshevskii Sbornik

Advanced search

The remark on the mean value theorem for the absolute value of Dirichlet L-function in the critical strip

https://doi.org/10.22405/2226-8383-2021-22-1-67-75

Abstract

We continue our researches concerning the generalization and improvement of R.T.Turganaliev’s result that states an asymptotic formula for the mean value of the Riemann zeta function in the critical strip with power factor saving in the remainder term.We find an asymptotic for the mean value of Dirichlet L-function in the critical strip. This assertion improves R.T.Turganaliev’s theorem for zeta-function in the whole interval $$(1/2 < Re 𝑠 ≤ 1)$$. Our result is based on the special use of the estimation of exponential sums by second derivative test.

About the Authors

Lyudmila Gennad’evna Arkhipova
M. V. Lomonosov Moscow State University
Russian Federation

сandidate of physical and mathematical sciences



Vladimir Nikolaevich Chubarikov
M. V. Lomonosov Moscow State University
Russian Federation

doctor of physical and mathematical sciences, professor



References

1. Vinogradov I. M. 1976, “Special variants of the method of trigonometric sums” - - - M.: Fizmatlit. 120 p.

2. Vinogradov I. M. 1980, “The method of trigonometric sums in number theory. 2nd ed., corrected and supplemented” - - - M.: Fizmatlit. 144 p.

3. van der Corput J. G. 1921, “Zahlentheoretische Absch¨atzungen”// Math. Ann., 84, pp. 53–79.

4. van der Corput J. G. 1922, “Versch¨arfung der Absch¨atzung beim Teilerproblem”// Math. Ann., 87, pp. 39–65.

5. Ingham A. E. 1933, “Mean-value theorems and the Riemann zeta-function”// Quart. J. Math., 4, pp. 278–290.

6. Davenport H. 1935, “Note on mean-value theorems for the Riemann zeta-function”// J. Lond. Math. Soc., 10, pp. 136–138.

7. Titchmarsh E. K. 1953, “Theory of the Riemann zeta function” - - - Moscow: ILL.

8. Turganaliev R. T. 1981, “An asymptotic formula for the average values of the fractional power of the Riemann zeta function”// Works of Math. in-ta AN SSSR, 158, pp. 203–226.

9. Vinogradov I. M. 1958, “A new estimate of the $$\zeta$$ function $$(1+𝑘)$$” // Izv. AN SSSR, ser.math., 22, № 2, pp. 161–164.

10. Korobov N. M. 1958,“ On the zeros of the function $$\zeta(𝑠)$$” // Dokl. USSR Academy of Sciences,

11. , pp. 231–232.

12. Korobov, N., M. 1958, “Estimates of trigonometric sums and their applications.nauk”, 13, no. 4, pp. 185–192.

13. Richert H.-E. 1967, “Zur Absch¨atzung der Riemannschen Zeta-funktion in der Nahe der Vertikalen $$\sigma=1$$” // Math.Ann., 169, no. 2, pp. 97–101.

14. Karatsuba A. A. 1971, “Estimates of trigonometric sums by the method of I. M. Vinogradov and their applications” // Tr. MIAN USSR, 112, pp. 241–255.

15. Arkhipov G., Buriev K. 1993, “Refinement of estimates for the Riemann zeta-function in a neibourhood of the line $$Re(𝑠) = 1$$” // Integral Transforms and Special Functions, vol.1, no. 1,

16. pp, 1–7.

17. Davenport G. 1971, “Multiplicative number theory” - - - M.: Fizmatlit. 200 p. 16. Voronin S. M., Karatsuba A. A. 1994, “The Riemann zeta function” - - - M.: Fizmatlit. 376 p.

18. Karatsuba A. A. 1983, “Fundamentals of analytical number theory” - - - Moscow: Nauka, 240 p.

19. Popov O. V. 1993, “On Hadamard’s method concerning zeros of the Riemann zeta-function” // Integral Transforms and Special Functions, vol.1, no. 2, pp. 143–144.


Review

For citations:


Arkhipova L.G., Chubarikov V.N. The remark on the mean value theorem for the absolute value of Dirichlet L-function in the critical strip. Chebyshevskii Sbornik. 2021;22(1):67-75. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-1-67-75

Views: 318


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)