Preview

Chebyshevskii Sbornik

Advanced search

Mathematical modeling of elasticity properties in the mechanics of composite materials

https://doi.org/10.22405/2226-8383-2020-21-3-262-271

Abstract

This paper presents an overview of mathematical models that allow us to determine the
effective elastic characteristics of various types of composite materials. The most well-known
models are considered: virial decomposition, self-matching method, correlation approximation,
and singular approximation. Models with a layered structure and matrix systems with a regular
structure are considered.

About the Authors

Igor Konstantinovich Arkhipov
Tula state pedagogical University L. N. Tolstoy
Russian Federation
doctor of technical Sciences, Professor


Vlada Igorevna Abramova
Tula state pedagogical University L. N. Tolstoy
Russian Federation
candidate of technical Sciences, associate Professor


Alexandr Evgenievich Gvozdev
Tula state pedagogical University L.N. Tolstoy
Russian Federation
doctor of engineering, Professor, Professor


Olga Vladimirovna Kuzovleva
Russian State University of justice
Russian Federation
candidate of technical Sciences, docent, docent


References

1. Krivoglaz M. A., Cherevko A.S. 1959, «About elastic modules of a solid mixture», \textit{Metal Physics and metal science}, vol.8, no. 2, pp. 161-164.

2. Kanaun S. K. 1975, «Self-consistent field Method in the problem of effective properties of an elastic composite», \textit{Applied mechanics and technical physics}, no. 4, pp. 194.

3. Shermergor T.D. 1977, \textit{Theory of elasticity of micro-homogeneous media}. Moscow. Nauka, 399 pp.

4. Arkhipov I. K., Tolokonnikov L. A. 1984, «Effective relations between stresses and deformations in the correlation theory of elastic-plastic deformations», \textit{Izvestiya ANSSSR. Solid mechanics}, vol.2. pp. 196-200.

5. Arkhipov I. K., Gerlein O. V. 1982, «Correlation characteristics of the plastic stiffness of a chaotically reinforced composite», \textit{News of universities. Mathematics}, no. 7, pp. 66-70.

6. Fokin A. G., Shermergor T. D. 1969, «Calculation of effective elastic modules of composite materials taking into account multiparticle interactions», \textit{Applied mechanics and technical physics}, no. 1, pp. 51.

7. Livshits I. M., Rosenzweig L. N. 1946, «On the theory of elastic properties of polycrystals», \textit{Journal of experimental and theoretical physics}, vol.11, pp. 967.

8. Fokin A. G., Shermergor T. D. 1968, «Statistical description of the elastic field of layered materials», \textit{Engineering and physical journal. Solid mechanics}, no. 4, pp. 93.

9. Fokin A. G., Shermergor T. D. 1975, «Effective elastic modulus of a composite composed of anisotropic layers», \textit{Mechanics of polymers}, no. 3, pp. 408.

10. Yeh R. H. T. 1970, «Variational principles of elastic moduli of composite materials», \textit{J. App. Phys}, no. 8, pр. 3353.

11. Yeh R. H. T. 1971, «Variational bounds of the elastic moduli of twophase materials», \textit{J.App. Phy}s, no. 3, pр. 1101.


Review

For citations:


Arkhipov I.K., Abramova V.I., Gvozdev A.E., Kuzovleva O.V. Mathematical modeling of elasticity properties in the mechanics of composite materials. Chebyshevskii Sbornik. 2020;21(3):262-271. (In Russ.) https://doi.org/10.22405/2226-8383-2020-21-3-262-271

Views: 285


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)