Preview

Chebyshevskii Sbornik

Advanced search

Best quadrature formulas calculation of curvilinear integrals for some classes of functions and currves

https://doi.org/10.22405/2226-8383-2020-21-3-250-261

Abstract

For an approximate calculation of a curvilinear integral
$$J(f;\Gamma):=\int\limits_{\Gamma}f(x_1,x_2,\ldots,x_m)dt$$
when the curve $\Gamma$ is given by parametric equations
$$x_{1}=\varphi_{1}(t),
x_{2}=\varphi_{2}(t),\ldots,x_{m}=\varphi_{m}(t), 0\leq t\leq L$$
the quadrature formula is entered into consideration
$$J(f;\Gamma):\approx\sum_{k=1}^{N}p_{k}\, f\Bigl(\varphi_{1}(t_k),\,
\varphi_{2}(t_k), \ldots,\, \varphi_{m}(t_k)\Bigr),$$ where
$P=\left\{p_{k}\right\}_{k=1}^{N}$ and $T:=\left\{t_{k}:0\leq
t_{1}<t_{2}<\cdots<t_{N}\leq L\right\}$-- are arbitrary vector
coefficients and nodes. Let
$H^{\omega_{1},\ldots,\omega_{m}}[0,L]$-- sets of curves $\Gamma$,
whose coordinate functions $\varphi_{i}(t)\in H^{\omega_{i}}[0,L] \
(i=\overline{1,m}),$ where $\omega_{i}(t) \ (i=\overline{1,m})$--
are given moduli of continuity $\mathfrak{M}_{\rho}^{\omega,p}$--
functions class $f(M),$ defined in point $M\in\Gamma,$ such for any
two points
$M^{\prime}=M(x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{m}^{\prime}),$
$M^{\prime\prime}=M(x_{1}^{\prime\prime},x_{2}^{\prime\prime},\ldots,x_{m}^{\prime\prime})$
belonging to a curve $\Gamma \in
H^{\omega_{1},\ldots,\omega_{m}}[0,L]$ satsify the condition
$$\Bigl|f(M^{\prime})-f(M^{\prime\prime})\Bigr|\le\omega(\rho_{p}(M^{\prime},
M^{\prime\prime})),$$ where $$\rho_{p}(M^{\prime},
M^{\prime\prime})=\left\{\sum_{i=1}^{m}|x^{\prime}_{i}-x_{i}^{\prime\prime}|^{p}\right\}^{1/p},
\ 1\leq p\leq \infty,$$ $\omega(t)$-- given moduls of continuity.
It is proved that among all quadrature formulas of the above from,
the best for a class of functions $\mathfrak{M}_{\rho}^{\omega,p}$
and a class of curves $H^{\omega_{1},\ldots,\omega_{m}}[0,1]$, is
the formula of average rectangles.

The exact error estimate of the best quadrature formula is
calculated for all the functional classes under consideration and
the curves are given a generalization for more general classes of
functions.}

About the Authors

Mirgand Shabozovich Shabozov
Tajik national University
Russian Federation

doctor of physical and mathematical Sciences, Professor, Academician of the National Academy of Sciences of Tajikistan



Muslimi Karomatullo Abdukarimzoda
Tajik National University
Russian Federation

Post-graduate student of the Department of Mathematical Analysis and Theory of Functions



References

1. Nikol'skiy S.M. 1952, \textit{``Quadrature formulas``}, { Izv. AN

2. USSR. Series mat., \No16, p. 181-196} (in Russian).

3. Vakarchuk S.B. 1986, \textit{``Optimal formula for the numerical

4. integration of curvilinear integral of the first kind for some

5. classes of functions and curves``}, { Ukr. mat. zhurnal, t.38, \No5,

6. p. 643-645} (in Russian).

7. Shabozov M.Sh., Mirpochchoev F.M. 2010, \textit{``Optimizing

8. approximate integration of curvilinear integral of the first type

9. for some classes functions and curves``}, {DAN RT, v.53, \No6,

10. p.415-419.} (in Russian).

11. Tukhliev K. 2013, \textit{``The best quadrature formulas for the

12. approximate calculation of a curvilinear integral of the first kind

13. for some classes of functions and curve``}, News of Tula State

14. University. natural Sciences, issue. no 2, p.50-57 (in Russian).

15. Tukhliev K. 2013, \textit{``Optimal quadrature formulas for the

16. approximate calculation of a curvilinear integral of the first kind

17. for some classes of functions and curve``}, {Simulation and analysis

18. of information systems, t.20, №3, p.121-129} (in Russian).

19. Shabozov M.Sh. 2014, \textit{``About the best quadrature formulas

20. for calculation of curvilinear integral in some classes functions

21. and curves``}, {Mat. Notes, v.96, \No7, pp.637-640} (in Russian).

22. Korneichuk N.P. 1987, \textit{``Exact constant in theory

23. approximations``}, {M.: Nauka, 424 p.} (in Russian).

24. Korneichuk N.P. 1968, \textit{``Best cubature formulas for some

25. classes of functions of many variables``}, {Mat. Notes, vol. 3,

26. \No5, pp. 565-576} (in Russian).


Review

For citations:


Shabozov M.Sh., Abdukarimzoda M.K. Best quadrature formulas calculation of curvilinear integrals for some classes of functions and currves. Chebyshevskii Sbornik. 2020;21(3):250-261. (In Russ.) https://doi.org/10.22405/2226-8383-2020-21-3-250-261

Views: 289


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)